Malaysian Journal of Analytical Sciences Vol 24 No 2 (2020): 247 - 257

 

 

 

 

PREPARATION, CHARACTERIZATION AND SWELLING STUDIES OF CARBOXYMETHYL SAGO STARCH HYDROGEL

 

(Penyediaan, Pencirian dan Kajian Pengembangan Hidrogel Karboksimetil Kanji Sagu)

 

Normastura Sulta1, Norhazlin Zainuddin1*, Mansor Ahmad1, Mas Jaffri Masarudin2

 

1Chemistry Department, Faculty of Science

2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

 

*Corresponding author:  norhazlin@upm.edu.my

 

 

Received: 2 January 2020; Accepted: 26 March 2020

 

 

Abstract

Carboxymethyl sago starch (CMSS) hydrogel was prepared by dissolving CMSS in hydrochloric acid (HCl) solution under vigorous stirring to form a gel. The parameter studied were the effect of the percentage of CMSS, the concentration of the acid solution, reaction time and reaction temperature to identify the optimum condition of preparation of CMSS hydrogel. 60% of CMSS in 2.0M acid solution for 12 hours reaction time at room temperature were the optimum conditions for CMSS hydrogel. The hydrogel was characterized by using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR spectrum of CMSS showed an additional absorption band indicating the substitution of CH2COO-Na+ group on the starch molecular chain during carboxymethylation, while the spectrum of CMSS hydrogel showed an additional sharp absorption band indicating that the Na in CMSS being exchanged to H from HCl solution. SEM image of CMSS hydrogel showed pores in structure and connected to form networks. TGA curve showed that the maximum rate of thermal decomposition of CMSS hydrogel was higher than CMSS which could be due to the presence of the cross-linkages in the CMSS hydrogel. CMSS hydrogel gave a high swelling degree in PBS solution at pH 7 and a low swelling degree in acidic medium.

 

Keywords:  hydrogel, carboxymethyl sago starch, crosslinking, characterization,swelling

 

Abstrak

Hidrogel karboksimetil kanji sagu (CMSS) telah disediakan dengan melarutkan CMSS dalam larutan asid hidroklorik (HCl) di bawah pengadukan kuat untuk membentuk hidrogel. Parameter yang dikaji untuk mengoptimumkan penyediaan hidrogel CMSS, antaranya termasuklah kesan peratusan CMSS, kepekatan larutan asid, masa dan suhu tindak balas. 60% CMSS dalam larutan asid 2.0M dengan masa tindak balas 12 jam pada suhu bilik merupakan keadaan optimum untuk penyediaan hidrogel CMSS. Hidrogel dicirikan dengan menggunakan spektrometer infra-merah Fourier (FT-IR), analisis termogravimetrik (TGA) dan pengimbasan mikroskop elektron (SEM). Spektrum FTIR menunjukkan jalur penyerapan tambahan yang menunjukkan penggantian kumpulan CH2COO- Na+ pada rantai molekul kanji semasa tindak balas karboksimetilasi, manakala spektrum hidrogel CMSS menunjukkan tambahan jalur penyerapan tajam yang menunjukkan bahawa Na dalam molekul CMSS ditukar kepada H dari larutan HCl. Imej SEM dari hidrogel CMSS menunjukkan liang-liang dalam struktur dan saling berhubungan untuk membentuk rangkaian. Lengkung analisis TGA menunjukkan bahawa kadar penguraian haba maksimum hidrogel CMSS lebih tinggi daripada CMSS pada 330.22 ºC dengan 60.22% penurunan berat utama. Ini mungkin disebabkan oleh adanya rangkai silang dalam hidrogel CMSS. Hidrogel CMSS memberikan tahap pengembangan yang tinggi dalam larutan PBS pada pH 7 dan tahap pengembangan yang rendah dalam medium berasid.

 

Kata kunci:  hidrogel, karboksimetil kanji sagu, rangkai silang, pencirian, pengembangan

 

References

1.       Pushpamalar, J., Veeramachineni, A. K., Owh, C. and Loh, X. J. (2016). Biodegradable polysaccharides for controlled drug delivery. ChemPlusChem, 81: 1-12.

2.       Pushpamalar, V, Langford, S. J., Ahmad, M. and Lim, Y. Y. (2006). Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 64: 312-318.

3.       Alcázar-Alay, S. C. and Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas), 35(2): 215-236.

4.       Chen, Q., Yu, H., Wang, L., Abdin, Z. U., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R. U., Zhang, H. and Chen, X. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5: 67459-67474.

5.       Kamel, S. and Jahangir, K. (2007). Optimization of carboxymethylation of starch in organic solvents. International Journal of Polymeric Materials, 56(5): 511-519.

6.       Faheem A., M., Hanif, M. and Ranjha, N. M. (2016). Methods of synthesis of hydrogels: A review. Saudi Pharmaceutical Journal, 24: 554-559.

7.       Jamingan, Z., Ahmad, M. B., Hashim, K. and Zainuddin, N. (2015). Sago starch based hydrogel prepared using electron beam irradiation technique for controlled release application. Malaysian Journal of Analytical Sciences, 19(3): 503-512.

8.       Ullah, F., Bisyrul, M., Javed, F. and Akil, H. (2015). Classification, processing and application of hydrogels: A review. Materials Science & Engineering C, 57: 414-433.

9.       Hoare, T. R. and Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8): 1993-2007.

10.    Hamidi, M., Azadi, A. and Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15): 1638-1649.

11.    Takigami, M., Nagasawa, N., Hiroki, A., Tagichi, M. and Takigami, S. (2012). Preparation of stable CMC-acid gel. Gums and Stabilisers for the Food Industry, 16: 175-182.

12.    Nitta, S. and Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences, 14(1): 1629-1654.

13.    Zainuddin, N. B. (2003). Carboxymethylation of sago starch and sago waste and the formation of carboxymethyl starch-hydrogel via irradiation technique. Thesis Universiti Putra Malaysia.

14.    Othman, Z., Hashim, K., Sabariah, K., Nasir, M. H. A. and Hassan, A. (2015). Synthesis and characterization of carboxymethyl derivatives of sago (Metroxylon sagu) starch. Macromolecular Symposia, 353(1): 139-146.

15.    Nagasawa, N., Yagi, T., Kume, T. and Yoshii, F. (2004). Radiation crosslinking of carboxymethyl starch. Carbohydrate Polymers, 58: 109-113.

16.    Pushpamalar, V., Langford, S. J., Ahmad, M., Hashim, K. and Lim, Y. Y. (2013). Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media. Journal Applied Polymer Science, 128: 451-459.

17.    Sadeghi, M. and Hosseinzadeh, H. (2010). Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g -poly(AMPS). Turkish Journal of Chemistry, 34: 739-752.

18.    Budianto, E., Muthoharoh, S. P. and Nizardo, N. M. (2015). Effect of crosslinking agents, pH and temperature on swelling behavior of cross - linked chitosan hydrogel. Asian Journal of Applied Sciences, 3(5): 2321-2893.

19.    Kabiri, K, Omidian, H., Doroudiani, S., Mp, T. O. N. and Street, K. (2011). Superabsorbent hydrogel composites and nanocomposites: A review. Polymer Composites, 32(2): 277-289.

20.    Kabiri, K. and Zohuriaan-Mehr, M. J. (2003). Superabsorbent hydrogel composites. Polymers for Advance Technologies, 444: 438–444.

21.    Shah, R., Saha, N. and Saha, P. (2015). Influence of temperature, pH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVP–CMC hydrogel. Progress in Biomaterials, 4: 123-136.

22.    Ping Zhao, S., Jie Cao, M., Yan Li, L. and Lin Xu, W. (2010). Synthesis and properties of biodegradable thermo-and pH-sensitive poly [(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. Polymer Degradation and Stability, 95: 719-724.

23.    Gupta, N. V. and Shivakumar, H. G. (2012). Investigation of swelling behavior and mechanical properties of a pH ­ sensitive superporous hydrogel composite. Iranian Journal of Pharmaceutical Research, 11(2): 1-10.

24.    Basri, S. N., Zainuddin, N., Hashim, K. and Yusof, N. A. (2016). Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydrate Polymers, 138: 34-40.

25.    Zhang, B., Tao, H., Wei, B., Jin, Z., Xu, X. and Tian, Y. (2014). Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme. PLoS ONE, 2014: 1-13.

26.    Ahmad, F. B., Williams, P. A., Doublier, J. L., Durand, S. and Buleon, A. (1999). Physico-chemical characterisation of sago starch. Carbohydrate Polymers, 38(4): 361-370.

27.    Janarthanan, P., Zin Wan Yunus, W. M. and Ahmad, M. B. (2003). Thermal behavior and surface morphology studies on polystyrene grafted sago starch. Journal of Applied Polymer Science, 90(8):
2053-2058