Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 247 - 257
PREPARATION,
CHARACTERIZATION AND SWELLING STUDIES OF CARBOXYMETHYL SAGO STARCH HYDROGEL
(Penyediaan,
Pencirian dan Kajian Pengembangan Hidrogel
Karboksimetil Kanji Sagu)
Normastura Sulta1,
Norhazlin Zainuddin1*, Mansor Ahmad1, Mas
Jaffri Masarudin2
1Chemistry Department, Faculty of Science
2Department of Cell and Molecular
Biology, Faculty of Biotechnology and
Biomolecular Sciences
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
*Corresponding
author: norhazlin@upm.edu.my
Received: 2 January 2020;
Accepted: 26 March 2020
Abstract
Carboxymethyl
sago starch (CMSS) hydrogel was prepared by dissolving CMSS in hydrochloric
acid (HCl) solution under vigorous stirring to form a gel. The parameter
studied were the effect of the percentage of CMSS, the concentration of the
acid solution, reaction time and reaction temperature to identify the optimum
condition of preparation of CMSS hydrogel. 60% of CMSS in 2.0M acid solution
for 12 hours reaction time at room temperature were the optimum conditions for
CMSS hydrogel. The hydrogel was characterized by using Fourier transform
infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron
microscopy (SEM). FTIR spectrum of CMSS showed an additional absorption band
indicating the substitution of CH2COO-Na+
group on the starch molecular chain during carboxymethylation, while the
spectrum of CMSS hydrogel showed an additional sharp absorption band indicating
that the Na in CMSS being exchanged to H from HCl solution. SEM image of CMSS
hydrogel showed pores in structure and connected to form networks. TGA curve
showed that the maximum rate of thermal decomposition of CMSS hydrogel was
higher than CMSS which could be due to the presence of the cross-linkages in
the CMSS hydrogel. CMSS hydrogel gave a high swelling degree in PBS solution at
pH 7 and a low swelling degree in acidic medium.
Keywords: hydrogel, carboxymethyl sago
starch, crosslinking, characterization,swelling
Abstrak
Hidrogel
karboksimetil kanji sagu (CMSS) telah disediakan dengan melarutkan CMSS dalam
larutan asid hidroklorik (HCl) di bawah pengadukan kuat untuk membentuk
hidrogel. Parameter yang dikaji untuk mengoptimumkan penyediaan hidrogel CMSS,
antaranya termasuklah kesan peratusan CMSS, kepekatan larutan asid, masa dan
suhu tindak balas. 60% CMSS dalam larutan asid 2.0M dengan masa tindak balas 12
jam pada suhu bilik merupakan keadaan optimum untuk penyediaan hidrogel CMSS.
Hidrogel dicirikan dengan menggunakan spektrometer infra-merah Fourier (FT-IR),
analisis termogravimetrik (TGA) dan pengimbasan mikroskop elektron (SEM).
Spektrum FTIR menunjukkan jalur penyerapan tambahan yang menunjukkan
penggantian kumpulan CH2COO- Na+ pada rantai
molekul kanji semasa tindak balas karboksimetilasi, manakala spektrum hidrogel
CMSS menunjukkan tambahan jalur penyerapan tajam yang menunjukkan bahawa Na
dalam molekul CMSS ditukar kepada H dari larutan HCl. Imej SEM dari hidrogel
CMSS menunjukkan liang-liang dalam struktur dan saling berhubungan untuk
membentuk rangkaian. Lengkung analisis TGA menunjukkan bahawa kadar penguraian
haba maksimum hidrogel CMSS lebih tinggi daripada CMSS pada 330.22 ºC dengan
60.22% penurunan berat utama. Ini mungkin disebabkan oleh adanya rangkai silang
dalam hidrogel CMSS. Hidrogel CMSS memberikan tahap pengembangan yang tinggi
dalam larutan PBS pada pH 7 dan tahap pengembangan yang rendah dalam medium
berasid.
Kata
kunci: hidrogel, karboksimetil kanji
sagu, rangkai silang, pencirian, pengembangan
References
1. Pushpamalar,
J., Veeramachineni, A. K., Owh, C. and Loh, X. J. (2016). Biodegradable
polysaccharides for controlled drug delivery. ChemPlusChem, 81: 1-12.
2. Pushpamalar,
V, Langford, S. J., Ahmad, M. and Lim, Y. Y. (2006). Optimization of reaction
conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 64: 312-318.
3. Alcázar-Alay,
S. C. and Meireles, M. A. A. (2015). Physicochemical properties, modifications
and applications of starches from different botanical sources. Food Science and Technology (Campinas),
35(2): 215-236.
4. Chen,
Q., Yu, H., Wang, L., Abdin, Z. U., Chen, Y., Wang, J., Zhou, W., Yang, X.,
Khan, R. U., Zhang, H. and Chen, X. (2015). Recent progress in chemical
modification of starch and its applications. RSC Advances, 5: 67459-67474.
5. Kamel,
S. and Jahangir, K. (2007). Optimization of carboxymethylation of starch in
organic solvents. International Journal of Polymeric Materials, 56(5):
511-519.
6. Faheem
A., M., Hanif, M. and Ranjha, N. M. (2016). Methods of synthesis of hydrogels:
A review. Saudi Pharmaceutical Journal, 24: 554-559.
7.
Jamingan, Z., Ahmad, M.
B., Hashim, K. and Zainuddin, N. (2015). Sago starch based hydrogel prepared
using electron beam irradiation technique for controlled release application. Malaysian
Journal of Analytical Sciences, 19(3): 503-512.
8.
Ullah, F., Bisyrul, M.,
Javed, F. and Akil, H. (2015). Classification, processing and application of
hydrogels: A review. Materials Science & Engineering C, 57: 414-433.
9. Hoare,
T. R. and Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and
challenges. Polymer, 49(8): 1993-2007.
10. Hamidi,
M., Azadi, A. and Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced
Drug Delivery Reviews, 60(15): 1638-1649.
11. Takigami,
M., Nagasawa, N., Hiroki, A., Tagichi, M. and Takigami, S. (2012). Preparation
of stable CMC-acid gel. Gums and Stabilisers for the Food Industry, 16:
175-182.
12. Nitta,
S. and Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery
and tissue engineering. International Journal of Molecular Sciences,
14(1): 1629-1654.
13. Zainuddin,
N. B. (2003). Carboxymethylation of sago starch and sago waste and the
formation of carboxymethyl starch-hydrogel via irradiation technique. Thesis
Universiti Putra Malaysia.
14. Othman,
Z., Hashim, K., Sabariah, K., Nasir, M. H. A. and Hassan, A. (2015). Synthesis
and characterization of carboxymethyl derivatives of sago (Metroxylon sagu) starch. Macromolecular Symposia, 353(1):
139-146.
15. Nagasawa,
N., Yagi, T., Kume, T. and Yoshii, F. (2004). Radiation crosslinking of
carboxymethyl starch. Carbohydrate Polymers, 58: 109-113.
16. Pushpamalar,
V., Langford, S. J., Ahmad, M., Hashim, K. and Lim, Y. Y. (2013). Preparation
of carboxymethyl sago pulp hydrogel from sago waste by electron beam
irradiation and swelling behavior in water and various pH media. Journal
Applied Polymer Science, 128: 451-459.
17. Sadeghi,
M. and Hosseinzadeh, H. (2010). Synthesis and super-swelling behavior of a
novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g
-poly(AMPS). Turkish Journal of Chemistry, 34: 739-752.
18. Budianto,
E., Muthoharoh, S. P. and Nizardo, N. M. (2015). Effect of crosslinking agents,
pH and temperature on swelling behavior of cross - linked chitosan hydrogel. Asian
Journal of Applied Sciences, 3(5): 2321-2893.
19. Kabiri,
K, Omidian, H., Doroudiani, S., Mp, T. O. N. and Street, K. (2011).
Superabsorbent hydrogel composites and nanocomposites: A review. Polymer
Composites, 32(2): 277-289.
20. Kabiri,
K. and Zohuriaan-Mehr, M. J. (2003). Superabsorbent hydrogel composites. Polymers
for Advance Technologies, 444: 438–444.
21. Shah,
R., Saha, N. and Saha, P. (2015). Influence of temperature, pH and simulated
biological solutions on swelling and structural properties of biomineralized
(CaCO3) PVP–CMC hydrogel. Progress in Biomaterials, 4:
123-136.
22. Ping
Zhao, S., Jie Cao, M., Yan Li, L. and Lin Xu, W. (2010). Synthesis and
properties of biodegradable thermo-and pH-sensitive poly
[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. Polymer
Degradation and Stability, 95: 719-724.
23. Gupta,
N. V. and Shivakumar, H. G. (2012). Investigation of swelling behavior and
mechanical properties of a pH sensitive superporous hydrogel composite. Iranian
Journal of Pharmaceutical Research, 11(2): 1-10.
24. Basri,
S. N., Zainuddin, N., Hashim, K. and Yusof, N. A. (2016). Preparation and
characterization of irradiated carboxymethyl sago starch-acid hydrogel and its
application as metal scavenger in aqueous solution. Carbohydrate Polymers,
138: 34-40.
25. Zhang,
B., Tao, H., Wei, B., Jin, Z., Xu, X. and Tian, Y. (2014). Characterization of
different substituted carboxymethyl starch microgels and their interactions
with lysozyme. PLoS ONE, 2014: 1-13.
26. Ahmad,
F. B., Williams, P. A., Doublier, J. L., Durand, S. and Buleon, A. (1999).
Physico-chemical characterisation of sago starch. Carbohydrate Polymers,
38(4): 361-370.
27. Janarthanan,
P., Zin Wan Yunus, W. M. and Ahmad, M. B. (2003). Thermal behavior and surface
morphology studies on polystyrene grafted sago starch. Journal of Applied
Polymer Science, 90(8):
2053-2058