Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 78 - 86
EFFECT OF BMIM-CHLORIDE ON
PHYSIO CHEMICAL PROPERTIES OF NANOFIBER MEMBRANE FOR DOMESTIC WASTEWATER
TREATMENT
(Kesan BMIM-Klorida ke atas Sifat-Sifat Fisio-Kimia Membran
Nanogentian untuk Rawatan Sisa Air Domestik)
Ahmad Tarmizi Mohd 1, Nur Syakinah Abd Halim1, Mohd Dzul Hakim Wirzal1,4*, Muhammad Roil Bilad1, Nik Abdul Hadi Md Nordin1, Zulfan Adi Putra2, Abdull Rahim Mohd Yusoff3
1Chemical Engineering Department,
Universiti
Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
2PETRONAS Group Technical Solutions (GTS)
Process Simulation and Optimization, 50450 Kuala Lumpur, Malaysia
3Faculty of Science,
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
4Center of Ionic Liquid Research (CORIL),
Universiti
Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
*Corresponding
author: mdzulhakim.wirzal@utp.edu.my
Received: 20 November 2019;
Accepted: 21 January 2020
Abstract
Water is a vital
source that is essential for all living things. With increasing demand towards
water consumption, wastewater treatment is necessary. Nanofiber membrane (NFM) fabricated
by electrospinning is suitable to be used as a filter especially for water
treatment since it has huge surface area and high permeability compared to
conventional membrane. However, fouling issue has always become a threat as it
reduces membrane permeability over time. Therefore, surface modification methods
are being applied to NFM where membrane surface property will be improved in
order to reduce fouling. In this study, nylon 6,6 NFM was fabricated and soaked
in 1-butyl-3-methylimidazolium chloride (BMIM-Cl). The coating layer of BMIM-Cl
will reduce the effect of fouling while increasing membrane performance. This
study also compares the ionic liquid concentration to nylon 6,6 NFM with
respect to its performance and rejection. Based on the results, the coated
layer of BMIM-Cl increases the permeability up to >400 L/m2 .h.bar
while having superior rejection of chemical oxygen demand (COD) and phosphorus
content over 90%. Furthermore, the time taken to reach steady-state (relates to
fouling effect) increased with ionic liquid concentration, signifying the increase
of BMIM-chloride concentration will reduce the effect of cake formation.
Keywords:
nanofiber membrane, BMIM-chloride, wastewater
Abstrak
Air adalah
sumber penting yang diperlukan oleh semua hidupan. Dengan meningkatnya
permintaan terhadap penggunaan air, rawatan sisa air diperlukan. Membran nanogentian
(NFM) yang diperbuat oleh putaran elektrik sesuai digunakan sebagai penapis
terutama untuk rawatan air kerana ia mempunyai permukaan yang luas dan
kebolehtelapan tinggi berbanding dengan membran konvensional. Walau
bagaimanapun, masalah kerosakan (kotoran) sentiasa menjadi ancaman kerana ia
mengurangkan kebolehtelapan membran dari masa ke semasa. Oleh itu, kaedah
pengubahsuaian permukaan digunakan untuk NFM di mana sifat permukaan membran
akan dipertingkatkan untuk mengurangkan kerosakan. Dalam kajian ini, nilon 6,6
NFM dihasilkan dan direndam di dalam 1-butil-3-metilimidazolium klorida (BMIM-Cl).
Lapisan BMIM-Cl akan mengurangkan kesan kerosakan di samping meningkatkan
prestasi membran. Kajian ini juga membandingkan kepekatan cecair ionik ke atas
nilon 6,6 NFM sesuai dengan prestasi dan penyingkirannya. Berdasarkan hasil
kajian, lapisan BMIM-Cl meningkatkan kebolehtelapan hingga > 400 L/m2.
h.bar sementara mempunyai penyingkiran yang tinggi terhadap permintaan oksigen
kimia (COD) dan kandungan fosforus lebih dari 90%. Tambahan pula, masa yang
diambil untuk mencapai keadaan stabil (berkaitan dengan kesan kerosakan)
meningkat dengan kepekatan cecair ionik, menandakan peningkatan kepekatan
BMIM-Klorida akan mengurangkan kesan pembentukan kek.
Kata kunci: membran nanogentian, BMIM-klorida, sisa air
References
1. Ibrahim, N. A., Wirzal, M. D. H., Nordin, N. A. H.,
and Halim, N. S. A. (2018). Development of polyvinylidene fluoride (PVDF)-ZIF-8
membrane for wastewater treatment. IOP Conference Series: Earth and
Environmental Science, 140(1): 012021.
2.
Bae, J., Baek, I. and Choi, H. (2016). Mechanically enhanced
PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of
ENM properties on membrane performance. Water Research, 105: 406-412.
3. Liao,
Y., Loh, C., Tian, M., Wang, R., and Fane, A. G. (2018). Progress in
electrospun nanofibrus membranes for water treatment: Fabrication, modification
and applications. Progress in Polymer
Science, 77: 69-94.
4. George, G., Bhoria, N., Alhallaq, S.,
Abdala, A. and Mittal, V. (2016). Polymer membranes for acid gas removal from
natural gas. Separation and Purification Technology, 158: 333-356.
5. Singh,
R. (2006). Hybrid membrane systems for water purification: Technology, systems
design and operations. Elsevier.
6. Eliseus, A., Bilad, M. R.,
Nordin, N. A. H. M., Putra, Z. A. and Wirzal, M. D. H. (2017). Tilted membrane
panel: a new module concept to maximize the impact of air bubbles for membrane
fouling control in microalgae harvesting. Bioresource Technology, 241 (Supplement
C): 661-668.
7. Chang,
I. S., Le Clech, P., Jefferson, B., and Judd, S. (2002). Membrane fouling in
membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128(11): 1018-1029.
8. Foong, C. Y., Wirzal, M. D. H., and Bustam, M. A. (2020). A review on
nanofibers membrane with amino-based ionic liquid for heavy metal removal. Journal
of Molecular Liquids, 297: 111793.
9. Al-Husaini, I. S., Yusoff, A. R. M., Lau, W.J., Ismail, A. F., Al-Abri,
M. Z., and Wirzal, M. D. H. (2019). Iron oxide nanoparticles incorporated
polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chemical
Engineering Research and Design, 148:
142-154.
10. Bilad,
M. R., Westbroek, P. and Vankelecom, I. F. J. (2011). Assessment and
optimization of electrospun nanofiber-membranes in a membrane bioreactor (MBR).
Journal of Membrane Science, 380(1):
181-191.
11. Qin,
Y., Yang, H., Xu, Z, and Li, F. (2018). Surface modification of
polyacrylonitrile membrane by chemical reaction and physical coating:
comparison between static and pore-flowing procedures. ACS Omega, 3(4): 4231-4241.
12. Al-Husaini, I. S., Yusoff, A. R. M., Lau, W. J., Ismail, A. F., Al-Abri,
M. Z., Al-Ghafri, B. N., and Wirzal, M. D. H. (2019). Fabrication of
polyethersulfone electrospun nanofibrous membranes incorporated with hydrous
manganese dioxide for enhanced ultrafiltration of oily solution. Separation
and Purification Technology, 212:
205-214.
13. Kochkodan,
V., Johnson, D. J., and Hilal, N. (2014). Polymeric membranes: Surface
modification for minimizing (bio) colloidal fouling. Advances in Colloid and Interface Science, 206 (Supplement C):
116-140.
14. Kim, H.J., Park, S. J., Park, C. S., Le, T.-H., Hun Lee, S., Ha, T. H.,
Kim, H., Kim, J., Lee, C.S., Yoon, H., and Kwon, O. S. (2018). Surface-modified
polymer nanofiber membrane for high-efficiency microdust capturing. Chemical
Engineering Journal, 339:
204-213.
15. Vanangamudi, A., Yang, X., Duke, M. C., and Dumee, L. F. (2018).
Nanofibers for membrane applications. In A. Barhoum, M. Bechelany, and A.
Makhlouf (Eds.), Handbook of Nanofibers Springer International
Publishing: pp. 1-24.
16. Nasreen,
S. A. A. N., Sundarrajan, S., Nizarm, S. A. S., Balamurugan, R. and Ramakrishna,
S. (2013). Advancement in electrospun nanofibrous membranes modification and
their application in water treatment. Membranes
(Basel), 3 (4): 266-284.
17. Asadollahi
M., Bastani, D., and Musavi, S. A. (2017). Enhancement of surface properties
and performance of reverse osmosis membranes after surface modification: A
review. Desalination, 420: 330-383.
18. Hilal,
N., Khayet, M. and Wright, C. J. (2016). Membrane modification: Technology and applications.
CRC Press.
19. Khayet,
M. (2013). Polymeric nano-fibers and modified nano-fibers assembly in 3D network
for different potential applications. Journal
of Materials Science & Nanotechnology, 1 (1): 1-4.
20. Park,
M. J., Gonzales, R. R., Abdel-Wahab, A., Phuntsho, S., and Shon, H. K. (2018). Hydrophilic
polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for
high performance thin film composite forward osmosis membrane. Desalination, 426: pp. 50-59.
21. Javed,
K., Krumme, A., Krasnou, I., Mikli, V., Viirsalu, M., Plamus, T., Mendez, J. D.
(2017). Impact of 1-butyl-3-methylimidazolium chloride on the electrospinning
of cellulose acetate nanofibers. Journal
of Mactomolecular Science, Part A:
Pure and Applied Chemistry, 2017: 1-6.
22. Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H.,
Adi Putra, Z., Mohd Yusoff, A. R., Narkkun, T., and Faungnawakij, K. (2019).
Electrospun nylon 6,6/ZIF-8 nanofiber membrane for produced water filtration. Water,
11(10): 2111.
23. Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi
Putra, Z., Sambudi, N. S., and Mohd Yusoff, A. R. (2019). Improving performance
of electrospun nylon 6,6 nanofiber membrane for produced water filtration via
solvent vapor treatment. Polymers, 11(12): 1-11.
24. Bilad,
M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A.
H. M. and Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae
filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223: 23-28.
25. Yang,
J., He, F., Wu, H., Liang, Y., Wang, Y., and Sun, Z. (2018). Engineering surface
and optical properties of TiO2-coated electrospun PVDF nanofibers
via controllable self-assembly. Nanomaterials
(Basel), 8(9): 794.
26. Shrotri,
A., Kobayashi, H., and Fukuoka, A. (2017). Chapter Two - Catalytic Conversion
of Structural Carbohydrates and Lignin to Chemicals, in Advances in Catalysis,
vol. 60, C. Song, Ed. Academic Press: pp. 59–123.
27. Zhang,
M., Liao, B., Zhou, X., He, Y., Hong, H., Lin, H. and Chen, J. (2015). Effects
of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged
membrane bioreactor. Bioresource
Technology, 175: 59-67.
28. Fujioka,
T. and Nghiem, L. (2013). Modification of a polyamide reverse osmosis membrane
by heat treatment for enhanced fouling resistance. Water Science and Technology: Water Supply, 13(6): 1553-1559.