Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 78 - 86

 

 

 

 

EFFECT OF BMIM-CHLORIDE ON PHYSIO CHEMICAL PROPERTIES OF NANOFIBER MEMBRANE FOR DOMESTIC WASTEWATER TREATMENT

 

(Kesan BMIM-Klorida ke atas Sifat-Sifat Fisio-Kimia Membran Nanogentian untuk Rawatan Sisa Air Domestik)

 

Ahmad Tarmizi Mohd 1, Nur Syakinah Abd Halim1, Mohd Dzul Hakim Wirzal1,4*, Muhammad Roil Bilad1, Nik Abdul Hadi Md Nordin1, Zulfan Adi Putra2, Abdull Rahim Mohd Yusoff3

 

1Chemical Engineering Department,

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

2PETRONAS Group Technical Solutions (GTS) Process Simulation and Optimization, 50450 Kuala Lumpur, Malaysia

3Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

4Center of Ionic Liquid Research (CORIL),

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

 

*Corresponding author:  mdzulhakim.wirzal@utp.edu.my

 

 

Received: 20 November 2019; Accepted: 21 January 2020

 

 

Abstract

Water is a vital source that is essential for all living things. With increasing demand towards water consumption, wastewater treatment is necessary. Nanofiber membrane (NFM) fabricated by electrospinning is suitable to be used as a filter especially for water treatment since it has huge surface area and high permeability compared to conventional membrane. However, fouling issue has always become a threat as it reduces membrane permeability over time. Therefore, surface modification methods are being applied to NFM where membrane surface property will be improved in order to reduce fouling. In this study, nylon 6,6 NFM was fabricated and soaked in 1-butyl-3-methylimidazolium chloride (BMIM-Cl). The coating layer of BMIM-Cl will reduce the effect of fouling while increasing membrane performance. This study also compares the ionic liquid concentration to nylon 6,6 NFM with respect to its performance and rejection. Based on the results, the coated layer of BMIM-Cl increases the permeability up to >400 L/m2 .h.bar while having superior rejection of chemical oxygen demand (COD) and phosphorus content over 90%. Furthermore, the time taken to reach steady-state (relates to fouling effect) increased with ionic liquid concentration, signifying the increase of BMIM-chloride concentration will reduce the effect of cake formation.

 

Keywords: nanofiber membrane, BMIM-chloride, wastewater

 

Abstrak

Air adalah sumber penting yang diperlukan oleh semua hidupan. Dengan meningkatnya permintaan terhadap penggunaan air, rawatan sisa air diperlukan. Membran nanogentian (NFM) yang diperbuat oleh putaran elektrik sesuai digunakan sebagai penapis terutama untuk rawatan air kerana ia mempunyai permukaan yang luas dan kebolehtelapan tinggi berbanding dengan membran konvensional. Walau bagaimanapun, masalah kerosakan (kotoran) sentiasa menjadi ancaman kerana ia mengurangkan kebolehtelapan membran dari masa ke semasa. Oleh itu, kaedah pengubahsuaian permukaan digunakan untuk NFM di mana sifat permukaan membran akan dipertingkatkan untuk mengurangkan kerosakan. Dalam kajian ini, nilon 6,6 NFM dihasilkan dan direndam di dalam 1-butil-3-metilimidazolium klorida (BMIM-Cl). Lapisan BMIM-Cl akan mengurangkan kesan kerosakan di samping meningkatkan prestasi membran. Kajian ini juga membandingkan kepekatan cecair ionik ke atas nilon 6,6 NFM sesuai dengan prestasi dan penyingkirannya. Berdasarkan hasil kajian, lapisan BMIM-Cl meningkatkan kebolehtelapan hingga > 400 L/m2. h.bar sementara mempunyai penyingkiran yang tinggi terhadap permintaan oksigen kimia (COD) dan kandungan fosforus lebih dari 90%. Tambahan pula, masa yang diambil untuk mencapai keadaan stabil (berkaitan dengan kesan kerosakan) meningkat dengan kepekatan cecair ionik, menandakan peningkatan kepekatan BMIM-Klorida akan mengurangkan kesan pembentukan kek.

 

Kata kunci:  membran nanogentian, BMIM-klorida, sisa air

 

References

1.       Ibrahim, N. A., Wirzal, M. D. H., Nordin, N. A. H., and Halim, N. S. A. (2018). Development of polyvinylidene fluoride (PVDF)-ZIF-8 membrane for wastewater treatment. IOP Conference Series: Earth and Environmental Science, 140(1): 012021.

2.       Bae, J., Baek, I. and Choi, H. (2016). Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance. Water Research, 105: 406-412.

3.       Liao, Y., Loh, C., Tian, M., Wang, R., and Fane, A. G. (2018). Progress in electrospun nanofibrus membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77: 69-94.

4.       George, G., Bhoria, N., Alhallaq, S., Abdala, A. and Mittal, V. (2016). Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology, 158: 333-356.

5.       Singh, R. (2006). Hybrid membrane systems for water purification: Technology, systems design and operations. Elsevier.

6.       Eliseus, A., Bilad, M. R., Nordin, N. A. H. M., Putra, Z. A. and Wirzal, M. D. H. (2017). Tilted membrane panel: a new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresource Technology, 241 (Supplement C): 661-668.

7.       Chang, I. S., Le Clech, P., Jefferson, B., and Judd, S. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128(11): 1018-1029.

8.       Foong, C. Y., Wirzal, M. D. H., and Bustam, M. A. (2020). A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. Journal of Molecular Liquids, 297: 111793.

9.       Al-Husaini, I. S., Yusoff, A. R. M., Lau, W.J., Ismail, A. F., Al-Abri, M. Z., and Wirzal, M. D. H. (2019). Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chemical Engineering Research and Design, 148: 142-154.

10.    Bilad, M. R., Westbroek, P. and Vankelecom, I. F. J. (2011). Assessment and optimization of electrospun nanofiber-membranes in a membrane bioreactor (MBR). Journal of Membrane Science, 380(1): 181-191.

11.    Qin, Y., Yang, H., Xu, Z, and Li, F. (2018). Surface modification of polyacrylonitrile membrane by chemical reaction and physical coating: comparison between static and pore-flowing procedures. ACS Omega, 3(4): 4231-4241.

12.    Al-Husaini, I. S., Yusoff, A. R. M., Lau, W. J., Ismail, A. F., Al-Abri, M. Z., Al-Ghafri, B. N., and Wirzal, M. D. H. (2019). Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution. Separation and Purification Technology, 212: 205-214.

13.    Kochkodan, V., Johnson, D. J., and Hilal, N. (2014). Polymeric membranes: Surface modification for minimizing (bio) colloidal fouling. Advances in Colloid and Interface Science, 206 (Supplement C): 116-140.

14.    Kim, H.J., Park, S. J., Park, C. S., Le, T.-H., Hun Lee, S., Ha, T. H., Kim, H., Kim, J., Lee, C.S., Yoon, H., and Kwon, O. S. (2018). Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chemical Engineering Journal, 339: 204-213.

15.    Vanangamudi, A., Yang, X., Duke, M. C., and Dumee, L. F. (2018). Nanofibers for membrane applications. In A. Barhoum, M. Bechelany, and A. Makhlouf (Eds.), Handbook of Nanofibers Springer International Publishing: pp. 1-24. 

16.    Nasreen, S. A. A. N., Sundarrajan, S., Nizarm, S. A. S., Balamurugan, R. and Ramakrishna, S. (2013). Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes (Basel), 3 (4): 266-284.

17.    Asadollahi M., Bastani, D., and Musavi, S. A. (2017). Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination, 420: 330-383.

18.    Hilal, N., Khayet, M. and Wright, C. J. (2016). Membrane modification: Technology and applications. CRC Press.

19.    Khayet, M. (2013). Polymeric nano-fibers and modified nano-fibers assembly in 3D network for different potential applications. Journal of Materials Science & Nanotechnology, 1 (1): 1-4.

20.    Park, M. J., Gonzales, R. R., Abdel-Wahab, A., Phuntsho, S., and Shon, H. K. (2018). Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination, 426: pp. 50-59.

21.    Javed, K., Krumme, A., Krasnou, I., Mikli, V., Viirsalu, M., Plamus, T., Mendez, J. D. (2017). Impact of 1-butyl-3-methylimidazolium chloride on the electrospinning of cellulose acetate nanofibers. Journal of Mactomolecular Science, Part A: Pure and Applied Chemistry, 2017: 1-6.

22.    Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Mohd Yusoff, A. R., Narkkun, T., and Faungnawakij, K. (2019). Electrospun nylon 6,6/ZIF-8 nanofiber membrane for produced water filtration. Water, 11(10): 2111.

23.    Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Sambudi, N. S., and Mohd Yusoff, A. R. (2019). Improving performance of electrospun nylon 6,6 nanofiber membrane for produced water filtration via solvent vapor treatment. Polymers, 11(12): 1-11.

24.    Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M. and Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223: 23-28.

25.    Yang, J., He, F., Wu, H., Liang, Y., Wang, Y., and Sun, Z. (2018). Engineering surface and optical properties of TiO2-coated electrospun PVDF nanofibers via controllable self-assembly. Nanomaterials (Basel), 8(9): 794.

26.    Shrotri, A., Kobayashi, H., and Fukuoka, A. (2017). Chapter Two - Catalytic Conversion of Structural Carbohydrates and Lignin to Chemicals, in Advances in Catalysis, vol. 60, C. Song, Ed. Academic Press: pp. 59–123.

27.    Zhang, M., Liao, B., Zhou, X., He, Y., Hong, H., Lin, H. and Chen, J. (2015). Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 175: 59-67.

28.    Fujioka, T. and Nghiem, L. (2013). Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance. Water Science and Technology: Water Supply, 13(6): 1553-1559.