Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 70 - 77

 

 

 

 

PHYTOCHEMICAL SCREENING AND FTIR SPECTROSCOPY ON CRUDE EXTRACT FROM Enhalus acoroides LEAVES

 

(Saringan Fitokimia dan Spektroskopi FTIR Ekstrak Mentah Daun Enhalus acoroides)

 

Made Pharmawati1* and Luh Putu Wrasiati2

 

1Biology Department, Faculty of Mathematics and Natural Sciences

2Department of Agro-Industrial Technology, Faculty of Agricultural Technology

Udayana University, Kampus Bukit Jimbaran, Badung, 80361, Bali, Indonesia

 

*Corresponding author:  made_pharmawati@unud.ac.id

 

 

Received: 25 November 2019; Accepted: 9 January 2020

 

 

Abstract

Seagrass provides key ecological services in marine ecosystems, such as stabilising sediment, providing oxygen and acting as a nursery ground for marine biota. Seagrass has also been reported to have antioxidant activity that is useful for humans. One seagrass species, Enhalus acoroides, is widely distributed in Indonesia. This study aims to screen the phytochemical compounds, determine the functional groups and evaluate the profile of pigments present in E. acoroides leaf extract, which were collected from Semawang Beach, Sanur, Bali, Indonesia. The leaf extract was prepared using chloroform: ethanol (9:1) and tested for the presence of saponin, phenols, tannins and flavonoids. The functional groups and pigment profile were determined via Fourier-transform infrared spectroscopy (FTIR) and thin-layer chromatography (TLC), respectively. The results showed that the E. acoroides leaf extract contained phenols, tannins and flavonoids. The major functional groups found in the leaf extract were hydroxyl groups, lipids, alkanes, secondary amines, fatty acids, benzenoid compounds and phenols. The FTIR analysis also identified the presence of chlorophyll and carotenoids in the extract, which was further supported by the TLC analysis. This research shows that E. acoroides is a potential source of antioxidants and provides an opportunity for the development of natural products from E. acoroides in drug discovery.

 

Keywords:  Enhalus acoroides, FTIR, chromatography, phytochemical compound, seagrass

 

Abstrak

Rumput laut memainkan peranan penting dalam ekosistem marin yang menstabilkan sedimen, membekalkan oksigen dan berfungsi sebagai halaman bagi biota marin. Rumput laut juga dilaporkan mengandungi aktiviti antioksidan yang bermanfaat bagi manusia. Spesis rumput laut, Enhalus acoroides di jumpai meluas di Indonesia. Kajian ini bertujuan menyaring sebatian fitokimia, penentuan kumpulan berfungsi dan menilai profil pigmen yang wujud di dalam ekstrak daun E. acoroides, yang diambil dari Pantai Semawang, Sanur, Bali, Indonesia. Ekstrak daun disediakan menggunakan klorofom: etanol (9:1) dan diuji untuk penentuan kehadiran saponin, fenol, tannin dan flavonoid. Kumpulan berfungsi dan profil pigmen telah ditentukan masing-masing melalui spektroskopi inframerah transformasi Fourier (FTIR) dan kromatografi lapisan nipis (TLC). Hasil kajian menunjukkan ekstrak daun E. acoroides mengandungi fenol, tannin dan flavonoids. Kumpulan berfungsi utama yang dijumpai dalam ekstrak daun adalah kumpulan hidroksil, lipid, alkana, amina sekunder, asid lemak, sebatian benzoid dan fenol. Analisis FTIR juga mengenalpasti kehadiran klorofil dan karotenoid di dalam ekstrak, yang mana ia juga disokong oleh hasil analisis TLC. This research shows that E. acoroides is a potential source of antioxidants and provides an opportunity for the development of natural products from E. acoroides in drug discovery. Hasil kajian mendapati E. acoroides berpotensi sebagai sumber antioksidan dan potensinya dalam pembangunan sumber semulajadi dalam penemuan ubat.

 

Kata kunci:  Enhalus acoroides, FTIR, kromatografi, sebatian fitokimia, rumput laut

 

References

1.       Winston, J. C. (1999). Health-promoting properties of common herbs. The American Journal of Clinical Nutrition, 70(3): 491s-499s.

2.       Krishnaiah, D., Sarbatly, R. and Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89(3): 217-233.

3.       Saeed, N., Khan, M. R. and Shabbir, M.  (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12: 221.

4.       Al-Gubory, K. H. (2014). Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.  Reproductive BioMedicine Online, 29: 17-31.

5.       Ighodaro, O. M. and Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4):  287-293.

6.       Björk, M., Short, F., Mcleod, E. and Beer, S. (2008). Managing seagrasses for resilience to climate change. IUCN, Gland, Switzerland: pp. 8-18.

7.       Kuriandewa, T. E., Kiswara, W., Hutomo, M. and Soemodihardjo, S. (2003). The seagrasses of Indonesia. In: Green, E. P. and Short, F. T., Eds., World Atlas of Seagrasses, University of California Press, Barkeley: pp. 172-182.

8.       Kuo, J.  (2007). New monoecious seagrass of Halophila sulawesii (Hydrocharitaceae) from Indonesia.  Aquatic Botany, 87(2): 171-175.

9.       Pharmawati, M., Nurkamila, U. S. and Stevanus. (2016). RAPD fingerprinting key and phylogenetic of nine seagrass species from Sanur coastal water, Bali, Indonesia using matK sequences.  Biodiversitas, 17(2): 687-693.

10.    Ogawa, H. and Namba, N. (2002). Ecological characteristics of tropical seagrasses, especially Enhalus acoroides.  Fisheries Science, 68(sup2): 1767-1770.

11.    Amudha, P., Vanitha, V., Mohanasundaram, S, Bharathi N. P. and Jayalakshmi, M. (2017). Phytochemical analysis and invitro antioxidant screening of seagrass Enhalus acoroides. International Journal of Research and Pharmaceutical Science, 8(2): 251-258.

12.    Santoso, J., Anwariyah, S., Rumiantin, R. O., Putri, A. P., Ukhty, N. and Yoshie-Stark, Y.  (2012). Phenol content, antioxidant activity and fiber profile of four tropical seagrasses from Indonesia. Journal of Coastal Development, 15(2): 189-196.

13.    Windyaswari, A. S., Purba, J. P., Nurrahmah, S. S., Ayu, I. P., Imran, Z., Amin, A. A., Kurniawan, F., Pratiwi, N. T. M. and Iswantari, A.  (2019). Phytochemical profile of seagrass extract (Enhalus acoroides): A new marine source from Ekas Bay, East Lombok. IOP Conference Series: Earth and Environmental Science, 278, 012081.

14.    Tuapattinaya, P. M. J. and Rumahlatu, D. (2019). Analysis of flavonoid levels of Enhalus acoroides in different coastal waters in Ambon Island, Indonesia.  International Journal of Applied Biology, 3(1): 70-80.

15.    Khan, S. A., Khan, S., B., Khan, L. U., Farooq, A., Akhtar, K. and M. Asiri A. M. (2018). Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. In: S. K. Sharma, S. K., Ed., Handbook of Materials Characterization. Springer International Publishing AG, Springer Nature, Switzerland: pp.317-344.

16.    Hemmalakshmi, S., Priyanga, S. and Devaki, K. (2017). Fourier transform infra-red spectroscopy analysis of Erythrina variegata L.  Journal of Pharmaceutical Sciences and Research, 9(11): 2062-2067.

17.    Rajiv, P., Deepa, A., Vanathi, D. P. and Vidhya, D. (2017). Screening for phytochemicals and FTIR analysis of Myristica dactyloids fruit extract. International Journal of Pharmacy and Pharmaceutical Sciences, 9(1): 315-318.

18.    Maobe, M. A. G. and Nyarango, R. M.  (2013).  Fourier transformer infra-red spectrophotometer analysis of Urtica dioica medicinal herb used for the treatment of diabetes, malaria and pneumonia in Kisii region, Southwest Kenya.  World Applied Sciences Journal, 21(8): 1128-1135.

19.    Kumar, S., Jyotirmayee, K. and Sarangi, M. (2013). Thin layer chromatography: A tool of biotechnology for isolation of bioactive compounds from medicinal plants.  International Journal of Pharmaceutical Science Review and Research, 18(1): 126-132.

20.    Porika, R., Poojari, S., Lunavath, V. and Mamidala, E. (2014). Preliminary phytochemical investigation and TLC analysis of P. angulata fruit extract.  IOSR Journal of Pharmacy and Biological Sciences, 9(2): 11-14.

21.    Forgacs, E. and Cserhati, T. (2002). Thin-layer chromatography of natural pigments: New advances. Journal of Liquid Chromatography and Related Technologies, 25(10-11): 1521-1541.

22.    Zahra, N., Alim-un-Nisa, Fatima, Z., Kalim, I. and Saeed, K. (2015). Identification of synthetic food dyes in beverages by thin layer chromatography. Pakistan Journal of Food Science, 25(4): 178-181.

23.    den Hartog, C. and Kuo, J. (2006). Taxonomy and biography of seagrasses. In Larkum, T., Orth, R. J. and Duarte, C. M., Eds. Seagrasses: Biology, ecology and conservation. Springer, The Netherlands: pp. 1-23.

24.    McKenzie, L J. and Yoshida, R. L. (2009). Seagrass-watch. Proceeding of a workshop for monitoring seagrass habitats in Indonesia. The Nature Conservancy, Coral Triangle Center, Sanur, Bali: pp. 29-32.

25.    Harborne, J. B. (1984). Phytochemical methods: A guide to modern technique of plant analysis. (2nd ed). Chapman and Hall. London. pp. 37-168.

26.    Bacon, M. F. and Holden, M. (1967). Changes in chlorophylls resulting from various chemical and physical treatments of leaves and leaf extracts.  Phytochemistry, 6: 193-210.

27.    Dewi, C. S. U., Kasitowati, R. D. and Siagian, J. A. (2018). Phytochemical compounds of Enhalus acoroides from Wanci Island (Wakatobi) and Talango Island (Madura) Indonesia.  IOP Conference Series: Earth and Environmental Science, 137: 012045.

28.    Spectroscopic Tools.  Access from http://www.science-and-fun.de/tools/. [Access online 21-25 October 2019]

29.    Socrates, G.  (2004).  Infrared and Raman characteristic group frequencies tables and charts.  John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 IUD, England: pp. 1-340.

30.    Corcoran, M. P., McKay, D. L. and Blumberg, J. B. (2012). Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. Journal of Nutrition in Gerontology and Geriatrics, 31(3): 176-189.

31.    Pratheeba, T., Ragavendran, C. and Natarajan, D. (2015). Larvicidal, pupicidal and adulticidal potential of Ocimum gratissimum plant leaf extracts against filariasis inducing vector.  International Journal of Mosquito Research, 2 (2): 1-8.

32.    Li, X., Zhou, R., Xu, K., Xu, J., Jin, J., Fang, H. and He, Y.  (2018). Rapid determination of chlorophyll and pheophytin in green tea using Fourier transform infrared spectroscopy. Molecules, 23: 1010.

33.    Mezzomo, N. and Ferreira, S. R. S. (2016). Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry, 2016: 1-16.

34.    Kushwaha, K., Saxena, J., Tripathi, B. K. and Agarwal, M. K. (2014). Detection of carotenoids in psychrotrophic bacteria by spectroscopic approach.  Journal of BioScience and Biotechnology, 3(3): 253-260.

35.    Lichtenthaler, H. K. and Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In: Wrolstad, R. E., Acree, T. E., An, H., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F. and Sporns, P., Eds., Current protocols in food analytical chemistry (CPFA), John Wiley and Sons, New York: pp. F4.3.1-F4.3.8.

36.    Lachowicz, S., Oszmiański, J. and Wiśniewski, R. (2018). Determination of triterpenoids, carotenoids, chlorophylls, and antioxidant capacity in Allium ursinum L. at different times of harvesting and anatomical parts. European Food Research Technology, 244(7): 1269-1280.