Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 70 - 77
PHYTOCHEMICAL SCREENING AND FTIR SPECTROSCOPY ON CRUDE
EXTRACT FROM Enhalus acoroides LEAVES
(Saringan Fitokimia dan Spektroskopi FTIR Ekstrak Mentah
Daun Enhalus acoroides)
Made Pharmawati1* and Luh
Putu Wrasiati2
1Biology Department, Faculty of Mathematics and Natural
Sciences
2Department of Agro-Industrial Technology, Faculty of
Agricultural Technology
Udayana University, Kampus Bukit Jimbaran, Badung,
80361, Bali, Indonesia
*Corresponding author: made_pharmawati@unud.ac.id
Received: 25 November 2019;
Accepted: 9 January 2020
Abstract
Seagrass
provides key ecological
services in marine ecosystems, such as stabilising sediment, providing oxygen and acting as a nursery ground for
marine biota. Seagrass has also been reported to have antioxidant activity that is useful
for humans. One seagrass species, Enhalus
acoroides, is widely distributed in
Indonesia. This study aims to screen the phytochemical compounds,
determine the functional groups and evaluate the profile of pigments present in
E. acoroides leaf extract, which were
collected from Semawang Beach, Sanur, Bali, Indonesia. The leaf extract was
prepared using chloroform: ethanol (9:1) and tested for the presence of saponin, phenols, tannins
and flavonoids. The functional groups and pigment
profile were determined via Fourier-transform infrared spectroscopy (FTIR) and thin-layer
chromatography (TLC), respectively. The results showed that the E. acoroides leaf extract contained
phenols, tannins and flavonoids. The major functional groups found in the leaf extract were hydroxyl groups, lipids,
alkanes, secondary amines, fatty acids, benzenoid compounds and phenols. The
FTIR analysis also identified the presence of chlorophyll and carotenoids in the extract, which was further
supported by the TLC analysis. This research shows that
E. acoroides is a potential source of antioxidants and provides an
opportunity for the development of natural products from E. acoroides in drug discovery.
Keywords: Enhalus
acoroides, FTIR, chromatography, phytochemical compound, seagrass
Abstrak
Rumput laut memainkan
peranan penting dalam ekosistem marin yang menstabilkan sedimen, membekalkan
oksigen dan berfungsi sebagai halaman bagi biota marin. Rumput laut juga
dilaporkan mengandungi aktiviti antioksidan yang bermanfaat bagi manusia.
Spesis rumput laut, Enhalus acoroides di
jumpai meluas di Indonesia. Kajian ini bertujuan menyaring sebatian fitokimia,
penentuan kumpulan berfungsi dan menilai profil pigmen yang wujud di dalam
ekstrak daun E. acoroides, yang
diambil dari Pantai Semawang, Sanur, Bali, Indonesia. Ekstrak daun disediakan
menggunakan klorofom: etanol (9:1) dan diuji untuk penentuan kehadiran saponin,
fenol, tannin dan flavonoid. Kumpulan berfungsi
dan profil pigmen telah ditentukan masing-masing melalui spektroskopi
inframerah transformasi Fourier (FTIR) dan kromatografi lapisan nipis (TLC). Hasil kajian menunjukkan ekstrak daun E. acoroides mengandungi fenol, tannin
dan flavonoids. Kumpulan berfungsi utama yang dijumpai dalam ekstrak daun
adalah kumpulan hidroksil, lipid, alkana, amina sekunder, asid lemak, sebatian
benzoid dan fenol. Analisis FTIR juga mengenalpasti kehadiran klorofil dan
karotenoid di dalam ekstrak, yang mana ia juga disokong oleh hasil analisis
TLC. This research shows that E. acoroides is a potential source of antioxidants and provides an opportunity for the development of
natural products from E. acoroides in
drug discovery. Hasil kajian mendapati E.
acoroides berpotensi sebagai sumber antioksidan dan potensinya dalam
pembangunan sumber semulajadi dalam penemuan ubat.
Kata kunci: Enhalus acoroides, FTIR, kromatografi, sebatian
fitokimia, rumput laut
References
1.
Winston, J. C. (1999). Health-promoting
properties of common herbs. The American Journal of Clinical Nutrition,
70(3): 491s-499s.
2.
Krishnaiah, D., Sarbatly, R. and
Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal
plant species. Food and Bioproducts Processing, 89(3): 217-233.
3.
Saeed, N., Khan, M. R. and Shabbir,
M. (2012). Antioxidant activity, total
phenolic and total flavonoid contents of whole plant extracts Torilis
leptophylla L. BMC Complementary and Alternative Medicine, 12: 221.
4.
Al-Gubory, K. H. (2014). Environmental pollutants
and lifestyle factors induce oxidative stress and poor prenatal development. Reproductive BioMedicine Online, 29: 17-31.
5.
Ighodaro, O. M. and Akinloye, O. A.
(2018). First line defence antioxidants-superoxide dismutase (SOD), catalase
(CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire
antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287-293.
6.
Björk, M., Short, F., Mcleod, E. and
Beer, S. (2008). Managing seagrasses for resilience to climate change. IUCN,
Gland, Switzerland: pp. 8-18.
7.
Kuriandewa, T. E., Kiswara, W., Hutomo,
M. and Soemodihardjo, S. (2003). The seagrasses of Indonesia. In: Green, E. P.
and Short, F. T., Eds., World Atlas of Seagrasses, University of California
Press, Barkeley: pp. 172-182.
8.
Kuo, J.
(2007). New monoecious seagrass of Halophila sulawesii
(Hydrocharitaceae) from Indonesia. Aquatic
Botany, 87(2): 171-175.
9.
Pharmawati, M., Nurkamila, U. S. and
Stevanus. (2016). RAPD fingerprinting key and phylogenetic of nine seagrass
species from Sanur coastal water, Bali, Indonesia using matK sequences. Biodiversitas, 17(2): 687-693.
10.
Ogawa, H. and Namba, N. (2002).
Ecological characteristics of tropical seagrasses, especially Enhalus
acoroides. Fisheries Science,
68(sup2): 1767-1770.
11.
Amudha, P., Vanitha, V., Mohanasundaram,
S, Bharathi N. P. and Jayalakshmi, M. (2017). Phytochemical analysis and
invitro antioxidant screening of seagrass Enhalus acoroides. International
Journal of Research and Pharmaceutical Science, 8(2): 251-258.
12.
Santoso, J., Anwariyah, S., Rumiantin,
R. O., Putri, A. P., Ukhty, N. and Yoshie-Stark, Y. (2012). Phenol content, antioxidant activity
and fiber profile of four tropical seagrasses from Indonesia. Journal of
Coastal Development, 15(2): 189-196.
13.
Windyaswari, A. S., Purba, J. P.,
Nurrahmah, S. S., Ayu, I. P., Imran, Z., Amin, A. A., Kurniawan, F., Pratiwi,
N. T. M. and Iswantari, A. (2019).
Phytochemical profile of seagrass extract (Enhalus acoroides): A new
marine source from Ekas Bay, East Lombok. IOP Conference Series: Earth and
Environmental Science, 278, 012081.
14.
Tuapattinaya, P. M. J. and Rumahlatu, D.
(2019). Analysis of flavonoid levels of Enhalus acoroides in different
coastal waters in Ambon Island, Indonesia.
International Journal of Applied Biology, 3(1): 70-80.
15.
Khan, S. A., Khan, S., B., Khan, L. U.,
Farooq, A., Akhtar, K. and M. Asiri A. M. (2018). Fourier transform infrared
spectroscopy: Fundamentals and application in functional groups and
nanomaterials characterization. In: S. K. Sharma, S. K., Ed., Handbook of
Materials Characterization. Springer International Publishing AG, Springer
Nature, Switzerland: pp.317-344.
16.
Hemmalakshmi, S., Priyanga, S. and
Devaki, K. (2017). Fourier transform infra-red spectroscopy analysis of Erythrina
variegata L. Journal of
Pharmaceutical Sciences and Research, 9(11): 2062-2067.
17.
Rajiv, P., Deepa, A., Vanathi, D. P. and
Vidhya, D. (2017). Screening for phytochemicals and FTIR analysis of Myristica
dactyloids fruit extract. International Journal of Pharmacy and
Pharmaceutical Sciences, 9(1): 315-318.
18.
Maobe, M. A. G. and Nyarango, R. M. (2013).
Fourier transformer infra-red spectrophotometer analysis of Urtica
dioica medicinal herb used for the treatment of diabetes, malaria and
pneumonia in Kisii region, Southwest Kenya.
World Applied Sciences Journal, 21(8): 1128-1135.
19.
Kumar, S., Jyotirmayee, K. and Sarangi,
M. (2013). Thin layer chromatography: A tool of biotechnology for isolation of
bioactive compounds from medicinal plants. International Journal of Pharmaceutical
Science Review and Research, 18(1): 126-132.
20.
Porika, R., Poojari, S., Lunavath, V.
and Mamidala, E. (2014). Preliminary phytochemical investigation and TLC analysis
of P. angulata fruit extract. IOSR
Journal of Pharmacy and Biological Sciences, 9(2): 11-14.
21.
Forgacs, E. and Cserhati, T. (2002).
Thin-layer chromatography of natural pigments: New advances. Journal of
Liquid Chromatography and Related Technologies, 25(10-11): 1521-1541.
22.
Zahra, N., Alim-un-Nisa, Fatima, Z.,
Kalim, I. and Saeed, K. (2015). Identification of synthetic food dyes in
beverages by thin layer chromatography. Pakistan Journal of Food Science,
25(4): 178-181.
23.
den Hartog, C. and Kuo, J. (2006).
Taxonomy and biography of seagrasses. In Larkum, T., Orth, R. J. and Duarte, C.
M., Eds. Seagrasses: Biology, ecology and conservation. Springer, The
Netherlands: pp. 1-23.
24.
McKenzie, L J. and Yoshida, R. L.
(2009). Seagrass-watch. Proceeding of a workshop for monitoring seagrass
habitats in Indonesia. The Nature Conservancy, Coral Triangle Center, Sanur,
Bali: pp. 29-32.
25.
Harborne, J. B. (1984). Phytochemical methods:
A guide to modern technique of plant analysis. (2nd ed). Chapman and
Hall. London. pp. 37-168.
26.
Bacon, M. F. and Holden, M. (1967).
Changes in chlorophylls resulting from various chemical and physical treatments
of leaves and leaf extracts. Phytochemistry,
6: 193-210.
27.
Dewi, C. S. U., Kasitowati, R. D. and
Siagian, J. A. (2018). Phytochemical compounds of Enhalus acoroides from
Wanci Island (Wakatobi) and Talango Island (Madura) Indonesia. IOP Conference Series: Earth and
Environmental Science, 137: 012045.
28.
Spectroscopic Tools. Access from http://www.science-and-fun.de/tools/.
[Access online 21-25 October 2019]
29.
Socrates, G. (2004).
Infrared and Raman characteristic group frequencies tables and charts. John Wiley & Sons Ltd, Baffins Lane,
Chichester, West Sussex PO19 IUD, England: pp. 1-340.
30.
Corcoran, M. P., McKay, D. L. and
Blumberg, J. B. (2012). Flavonoid basics: Chemistry, sources, mechanisms of
action, and safety. Journal of Nutrition in Gerontology and Geriatrics,
31(3): 176-189.
31.
Pratheeba, T., Ragavendran, C. and
Natarajan, D. (2015). Larvicidal, pupicidal and adulticidal potential of Ocimum
gratissimum plant leaf extracts against filariasis inducing vector. International Journal of Mosquito Research,
2 (2): 1-8.
32.
Li, X., Zhou, R., Xu, K., Xu, J., Jin,
J., Fang, H. and He, Y. (2018). Rapid determination
of chlorophyll and pheophytin in green tea using Fourier transform infrared
spectroscopy. Molecules, 23: 1010.
33.
Mezzomo, N. and Ferreira, S. R. S.
(2016). Carotenoids functionality, sources, and processing by supercritical
technology: A review. Journal of Chemistry, 2016: 1-16.
34.
Kushwaha, K., Saxena, J., Tripathi, B.
K. and Agarwal, M. K. (2014). Detection of carotenoids in psychrotrophic
bacteria by spectroscopic approach. Journal
of BioScience and Biotechnology, 3(3): 253-260.
35.
Lichtenthaler, H. K. and Buschmann, C. (2001).
Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy.
In: Wrolstad, R. E., Acree, T. E., An, H., Decker, E. A., Penner, M. H., Reid,
D. S., Schwartz, S. J., Shoemaker, C. F. and Sporns, P., Eds., Current protocols
in food analytical chemistry (CPFA), John Wiley and Sons, New York: pp.
F4.3.1-F4.3.8.
36.
Lachowicz, S., Oszmiański, J. and
Wiśniewski, R. (2018). Determination of triterpenoids, carotenoids,
chlorophylls, and antioxidant capacity in Allium ursinum L. at different
times of harvesting and anatomical parts. European Food Research Technology,
244(7): 1269-1280.