Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 87 - 96
CHEMICAL COMPOSITION OF ESSENTIAL OILS FROM
LEAF EXTRACT OF PANDAN, Pandanus
amaryllifolius ROXB.
(Komposisi Kimia Minyak
Pati daripada Ekstrak Daun Pandan, Pandanus
amaryllifolius Roxb.)
Maisarah Mohamed Zakaria1, Uswatun
Hasanah Zaidan1,2*, Suhaili Shamsi1, Siti Salwa Abd Gani3
1Department of Biochemistry, Faculty of Biotechnology
and Biomolecular Sciences
2Halal Products Research Institute
3Department
of Agriculture Technology, Faculty of Agriculture
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
*Corresponding author: uswatun@upm.edu.my
Received: 28 April 2019;
Accepted: 27 January 2020
Abstract
Pandan or Pandanus
amaryllifolius, an aromatic tropical plant species, has gained much
interest among researchers in the quest to develop further use of its essential
oils beyond food flavoring, traditional medicines and limited food industries.
There has been lack of comprehensive investigations on therapeutic activities
of its essential oils (EOs) that may have potential use as therapeutic agents
in the treatment of various health issues. The present investigation reports on
the chemical composition of EOs from leaf extracts sourced from three different
locations in Peninsular Malaysia. Leaf extracts of P. amaryllifolius were drawn out from leaves of plants grown in the
states of Kedah, Selangor and Johor using Soxhlet extraction method with
ethanol as the solvent resulting in extraction yields of 21.08%, 20.54%, and
15.87%, respectively. The leaf extracts were further analyzed by gas-chromatography-mass
spectrometry (GC-MS) and Fourier transform-infrared spectroscopy (FTIR). A
total of 57 chemical compounds were identified comprising of fatty acids,
steroids, aromatic compounds and non-polar components making up 80.49-84.74% of
total oils. A total of 11 common peaks were determined consisting of pyranone
(0.78-1.74%); coumaran (1.12-5.31%); 1,4-di-tert-butylphenol (2.68-6.10%);
pinane (0.80%-1.46%); ethyl palmitate (1.04%-1.66%);
3,6,6-trimethyl-1-(1-phtalazinyl)-1,5,6,7-tetrahydro-4H-indazol-4-one
(0.75-1.69%); phytol (1.43-6.19%); purpurogallin (1.34-2.02%); squalene
(14.14-33.83%); decamethyltetrasiloxane (0.27-0.52%); and vitamin E
(2.58-3.66%) from the three different locations. Stigmasterol was not detected
from plants sourced in Selangor but was detected in samples from Kedah and
Johor with an amount of 6.73% and 9.05%, respectively. There were 16 common
peaks observed in all IR spectra from the three plants sources exhibiting
functional groups. The findings from the study present useful additional
information to existing literature on extractable EOs from pandan for potential
use in pharmaceutical or nutraceutical applications in the production of
functional food.
Keywords: Pandanus
amaryllifolius, chemical composition, essential oils, functional group
Abstrak
Pandan atau Pandanus amaryllifolius, satu spesies tumbuhan aromatik tropika,
telah mendapat perhatian di kalangan penyelidik dalam usaha membangunkan
penggunaan minyak pati (EO) pandan selanjutnya melebihi kegunaan sebagai perasa
makanan, perubatan tradisional dan dalam industri makanan yang terhad. Terdapat
kekurangan penyelidikan yang menyeluruh mengenai aktiviti terapeutik EO yang
mungkin mempunyai potensi sebagai ejen terapeutik dalam rawatan berbagai isu
kesihatan. Penyelidikan ini melaporkan komposisi kimia EO daripada ekstrak daun
dari tiga lokasi berbeza di Semenanjung Malaysia. Ekstrak daun P. amaryllifolius telah dihasilkan
daripada pokok yang ditanam di negeri-negeri Kedah, Selangor dan Johor dengan
menggunakan kaedah pengekstrakan Soxhlet bersama etanol sebagai pelarut dan
menghasilkan masing-masing 21.08%, 20.54%, dan 15.87%. Selanjutnya, ekstrak
daun telah dianalisis dengan menggunakan kromatografi gas-spektrometri jisim
(GC-MS) dan spektroskopi inframerah transformasi Fourier (FTIR). Sejumlah 57
sebatian kimia telah dikenal pasti yang terdiri daripada asid lemak, steroid,
sebatian aromatik dan komponen bukan berkutub meliputi 80.49-84.74% minyak pati
yang diperolehi. Terdapat sejumlah 11
puncak persamaan dan telah dikenal pasti sebagai mengandungi piranon
(0.78-1.74%); koumaran (1.12-5.31%); 1,4-di-tert-butilfenol (2.68-6.10%); pinan
(0.80-1.46%); etil palmitat (1.04-1.66%);
3,6,6-trimetil-1-(1-pitalazinill)-1,5,6,7-tetrahydro-4H-indazol-4-on
(0.75-1.69%); fitol (1.43-6.19%); purpurogalin (1.34-2.02%); skualin
(14.14-33.83%); dekamiltetrasiloxan (0.27-0.52%); dan vitamin E (2.58-3.66%) di
kalangan tiga minyak pati pandan dari lokasi berbeza. Stigmasterol tidak dapat
dikesan daripada pokok yang diperolehi dari Selangor tetapi di rekod diperolehi
dari sampel Kedah dan Johor masing-masing dengan 6.73% dan 9.05%. Sebanyak 16
puncak persamaan diperolehi di semua spektrum IR daripada tiga sumber pokok dan
mempamerkan kumpulan berfungsi. Keputusan daripada kajian mengemukakan
informasi tambahan yang kepada penulisan sedia ada mengenai potensi EO yang
boleh diekstrak dan yang mempunyai potensi dalam kegunaan farmaseutikal dan
nutraseutikal dalam pengeluaran makanan.
Kata kunci: Pandanus
amaryllifolius, komposisi kimia, minyak pati, kumpulan berfungsi
References
1. Yahya, F., Lu, T., Santos, R. C. D., Fryer, P. J., and
Bakalis, S. (2010). Supercritical carbon dioxide and solvent extraction of
2-acetyl-1-pyrroline from pandan leaf: the effect of pre-treatment. The
Journal of Supercritical Fluids, 55(1): 200-207.
2. Nor, F. M., Mohamed, S., Idris, N. A., & Ismail, R.
(2008). Antioxidative properties of Pandanus
amaryllifolius leaf extracts in accelerated oxidation and deep frying
studies. Food Chemistry, 110: 319-327.
3. Balinado, L., and Chan, M. (2017). An ethnomedicinal study of
plants and traditional health care practices in District 7, Cavite,
Philippines. 2017 International Conference on Chemical, Agricultural,
Biological and Medical Sciences, 10: 131-143.
4. Razak, N. I. A., Othman, R., and Pahang, J. T.
(2018). Ethnobotanical study on plant materials used in Malay traditional
post-partum bath (Mandi Serom) among Malay midwives in Kedah. Proceedings of
the Second International Conference on the Future of ASEAN, 2:
891-897.
5. Aggarwal, N. (2011). A review of recent investigations on
medicinal herbs possessing anti-diabetic properties. Journal of Nutritional Disorder and Therapy, 1: 102.
6. Courtois, E. A., Baraloto, C., Paine, C. T., Petronelli, P.,
Blandinieres, P. A., Stien, D., and Chave, J. (2012). Differences in volatile
terpene composition between the bark and leaves of tropical tree species. Phytochemistry, 82: 81-88.
7. Elgendy, E. M., Ibrahim, H. S., Elmeherry, H. F., Sedki, A.
G., and Mekhemer, F. U. (2017). Chemical and biological comparative in vitro studies of cinnamon bark and
lemon peel essential oils. Food Nutrition, 8: 110-125.
8. Silvis, I. C. J., Luning, P. A., Klose, N., Jansen, M., and
van Ruth, S. M. (2019). Similarities and differences of the volatile profiles
of six spices explored by proton transfer reaction mass spectrometry. Food
Chemistry, 271:
318-327.
9. Verma, R. S., Padalia, R. C., Chauhan, A., Singh, A., and
Yadav, A. K. (2011). Volatile constituents of essential oil and rose water of
damask rose (Rosa damascena Mill.)
cultivars from north Indian Hills. Natural Product Research, 25(17): 1577-1584.
10. Singh, G., Maurya, S., and Catalan, C. A. (2007). A
comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf
and bark volatile oils, oleoresins and their constituents. Food and
Chemical Toxicology, 45(9):
1650-1661.
11. Mehl, F., Marti, G., Boccard, J., Debrus, B., Merle, P.,
Delort, E., and Wolfender, J. L. (2014). Differentiation of lemon essential oil
based on volatile and non-volatile fractions with various analytical
techniques: A metabolomic approach. Food Chemistry, 143: 325-335.
12. Hui, L., He, L., Huan, L., XiaoLan, L., and AiGuo, Z. (2010).
Chemical composition of lavender essential oil and its antioxidant activity and
inhibition against rhinitis-related bacteria. African Journal of
Microbiology Research, 4(4):
309-313.
13. Kodal, S. P., and Aksu, Z. (2017). Phenolic pigment
extraction from orange peels: Kinetic modelling. 15th
International Conference on Environmental Science and Technology. Rhodes,
Greece, 31: 798-803.
14. Ramluckan, K., Moodley, K. G., and Bux, F. (2014). An
evaluation of the efficacy of using selected solvents for the extraction of
lipids from algal biomass by the Soxhlet extraction method. Fuel, 116: 103-108.
15. Al Juhaimi, F., and Özcan, M. M. (2018). Effect of cold press
and Soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic
compounds of various grape seed oils. Journal of Food Processing and
Preservation, 42(1):
13417.
16. Li, Y. Q., Kong, D. X., and Wu, H. (2013). Analysis and
evaluation of essential oil components of cinnamon barks using GCMS and FTIR
spectroscopy. Industrial Crops and Products, 41: 269-278.
17. Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., and
Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant
ethanolic extract of Evolvulus alsinoides
(L.) L. Journal of Food Science and Technology, 52(2): 1212-1217.
18. Ghasemzadeh, A., and Jaafar, H. Z. (2013). Profiling of
phenolic compounds and their antioxidant and anticancer activities in Pandan (Pandanus amaryllifolius Roxb.) extracts
from different locations of malaysia. BMC Complementary and Alternative
Medicine, 13(1): 341.
19. Ghasemzadeh, A., Jaafar, H. Z., Rahmat, A., and Ashkani, S.
(2015). Secondary metabolites constituents and antioxidant, anticancer and
antibacterial activities of Etlingera
elatior (Jack) RM grown in different locations of malaysia. BMC
Complementary and Alternative Medicine, 15(1): 335.
20. Chen, X. K., and Ge, F. H. (2014). Chemical components from
essential oil of Pandanus amaryllifolius leaves. Journal of
Chinese Medicinal Materials, 37(4): 616-620.
21. Kelly, G. S. (1999). Squalene and its potential clinical
uses. Alternative Medicine Review: A Journal of Clinical Therapeutic
4(1): 29-36.
22. Zeb, A., Ullah, F., Ayaz, M., Ahmad, S., and Sadiq, A.
(2017). Demonstration of biological activities of extracts from Isodon rugosus wall. Ex benth:
Separation and identification of bioactive phytoconstituents by GC-MS analysis
in the ethyl acetate extract. BMC Complementary and Alternative
Medicine, 17(1): 28.
23. de Alencar, M. V. O. B., Islam, M. T., de Lima, R. M. T.,
Paz, M. F. C. J., dos Reis, A. C., da Mata, A. M. O. F., and Mubarak, M. S.
(2018). Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with
DMBA‐induced breast cancer. IUBMB Life, 71(2): 200-121.
24. Driscoll, M. S., and Wagner, R. F. (2000). Clinical
management of the acute sunburn reaction. CUTIS-NEW YORK, 66(1): 53-60.
25. Borel, P., and Desmarchelier, C. (2018). Bioavailability of
fat-soluble vitamins and phytochemicals in humans: Effects of genetic
variation. Annual Review of Nutrition, 38: 69-96.
26. Adhikari, L., Kotiyal, R., Pandey, M., Bharkatiya, M.,
Sematy, A., and Semalty, M. (2018). Effect of geographical location and type of
extract on total phenol/flavon contents and antioxidant activity of different
fruits extracts of Withania somnifera. Current
Drug Discovery Technologies. 15:1.