Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 87 - 96

 

 

 

 

CHEMICAL COMPOSITION OF ESSENTIAL OILS FROM LEAF EXTRACT OF PANDAN, Pandanus amaryllifolius ROXB.

 

(Komposisi Kimia Minyak Pati daripada Ekstrak Daun Pandan, Pandanus amaryllifolius Roxb.)

 

Maisarah Mohamed Zakaria1, Uswatun Hasanah Zaidan1,2*, Suhaili Shamsi1, Siti Salwa Abd Gani3

 

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences

2Halal Products Research Institute

3Department of Agriculture Technology, Faculty of Agriculture

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  uswatun@upm.edu.my

 

 

Received: 28 April 2019; Accepted: 27 January 2020

 

 

Abstract

Pandan or Pandanus amaryllifolius, an aromatic tropical plant species, has gained much interest among researchers in the quest to develop further use of its essential oils beyond food flavoring, traditional medicines and limited food industries. There has been lack of comprehensive investigations on therapeutic activities of its essential oils (EOs) that may have potential use as therapeutic agents in the treatment of various health issues. The present investigation reports on the chemical composition of EOs from leaf extracts sourced from three different locations in Peninsular Malaysia. Leaf extracts of P. amaryllifolius were drawn out from leaves of plants grown in the states of Kedah, Selangor and Johor using Soxhlet extraction method with ethanol as the solvent resulting in extraction yields of 21.08%, 20.54%, and 15.87%, respectively. The leaf extracts were further analyzed by gas-chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared spectroscopy (FTIR). A total of 57 chemical compounds were identified comprising of fatty acids, steroids, aromatic compounds and non-polar components making up 80.49-84.74% of total oils. A total of 11 common peaks were determined consisting of pyranone (0.78-1.74%); coumaran (1.12-5.31%); 1,4-di-tert-butylphenol (2.68-6.10%); pinane (0.80%-1.46%); ethyl palmitate (1.04%-1.66%); 3,6,6-trimethyl-1-(1-phtalazinyl)-1,5,6,7-tetrahydro-4H-indazol-4-one (0.75-1.69%); phytol (1.43-6.19%); purpurogallin (1.34-2.02%); squalene (14.14-33.83%); decamethyltetrasiloxane (0.27-0.52%); and vitamin E (2.58-3.66%) from the three different locations. Stigmasterol was not detected from plants sourced in Selangor but was detected in samples from Kedah and Johor with an amount of 6.73% and 9.05%, respectively. There were 16 common peaks observed in all IR spectra from the three plants’ sources exhibiting functional groups. The findings from the study present useful additional information to existing literature on extractable EOs from pandan for potential use in pharmaceutical or nutraceutical applications in the production of functional food.

 

Keywords:  Pandanus amaryllifolius, chemical composition, essential oils, functional group

 

Abstrak

Pandan atau Pandanus amaryllifolius, satu spesies tumbuhan aromatik tropika, telah mendapat perhatian di kalangan penyelidik dalam usaha membangunkan penggunaan minyak pati (EO) pandan selanjutnya melebihi kegunaan sebagai perasa makanan, perubatan tradisional dan dalam industri makanan yang terhad. Terdapat kekurangan penyelidikan yang menyeluruh mengenai aktiviti terapeutik EO yang mungkin mempunyai potensi sebagai ejen terapeutik dalam rawatan berbagai isu kesihatan. Penyelidikan ini melaporkan komposisi kimia EO daripada ekstrak daun dari tiga lokasi berbeza di Semenanjung Malaysia. Ekstrak daun P. amaryllifolius telah dihasilkan daripada pokok yang ditanam di negeri-negeri Kedah, Selangor dan Johor dengan menggunakan kaedah pengekstrakan Soxhlet bersama etanol sebagai pelarut dan menghasilkan masing-masing 21.08%, 20.54%, dan 15.87%. Selanjutnya, ekstrak daun telah dianalisis dengan menggunakan kromatografi gas-spektrometri jisim (GC-MS) dan spektroskopi inframerah transformasi Fourier (FTIR). Sejumlah 57 sebatian kimia telah dikenal pasti yang terdiri daripada asid lemak, steroid, sebatian aromatik dan komponen bukan berkutub meliputi 80.49-84.74% minyak pati yang diperolehi.  Terdapat sejumlah 11 puncak persamaan dan telah dikenal pasti sebagai mengandungi piranon (0.78-1.74%); koumaran (1.12-5.31%); 1,4-di-tert-butilfenol (2.68-6.10%); pinan (0.80-1.46%); etil palmitat (1.04-1.66%); 3,6,6-trimetil-1-(1-pitalazinill)-1,5,6,7-tetrahydro-4H-indazol-4-on (0.75-1.69%); fitol (1.43-6.19%); purpurogalin (1.34-2.02%); skualin (14.14-33.83%); dekamiltetrasiloxan (0.27-0.52%); dan vitamin E (2.58-3.66%) di kalangan tiga minyak pati pandan dari lokasi berbeza. Stigmasterol tidak dapat dikesan daripada pokok yang diperolehi dari Selangor tetapi di rekod diperolehi dari sampel Kedah dan Johor masing-masing dengan 6.73% dan 9.05%. Sebanyak 16 puncak persamaan diperolehi di semua spektrum IR daripada tiga sumber pokok dan mempamerkan kumpulan berfungsi. Keputusan daripada kajian mengemukakan informasi tambahan yang kepada penulisan sedia ada mengenai potensi EO yang boleh diekstrak dan yang mempunyai potensi dalam kegunaan farmaseutikal dan nutraseutikal dalam pengeluaran makanan.

 

Kata kunci:  Pandanus amaryllifolius, komposisi kimia, minyak pati, kumpulan berfungsi

 

References

1.       Yahya, F., Lu, T., Santos, R. C. D., Fryer, P. J., and Bakalis, S. (2010). Supercritical carbon dioxide and solvent extraction of 2-acetyl-1-pyrroline from pandan leaf: the effect of pre-treatment. The Journal of Supercritical Fluids55(1): 200-207.

2.       Nor, F. M., Mohamed, S., Idris, N. A., & Ismail, R. (2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chemistry110: 319-327. 

3.       Balinado, L., and Chan, M. (2017). An ethnomedicinal study of plants and traditional health care practices in District 7, Cavite, Philippines. 2017 International Conference on Chemical, Agricultural, Biological and Medical Sciences, 10: 131-143.

4.       Razak, N. I. A., Othman, R., and Pahang, J. T. (2018). Ethnobotanical study on plant materials used in Malay traditional post-partum bath (Mandi Serom) among Malay midwives in Kedah. Proceedings of the Second International Conference on the Future of ASEAN, 2: 891-897. 

5.       Aggarwal, N. (2011). A review of recent investigations on medicinal herbs possessing anti-diabetic properties. Journal of  Nutritional Disorder and Therapy1: 102.

6.       Courtois, E. A., Baraloto, C., Paine, C. T., Petronelli, P., Blandinieres, P. A., Stien, D., and Chave, J. (2012). Differences in volatile terpene composition between the bark and leaves of tropical tree species. Phytochemistry82: 81-88.

7.       Elgendy, E. M., Ibrahim, H. S., Elmeherry, H. F., Sedki, A. G., and Mekhemer, F. U. (2017). Chemical and biological comparative in vitro studies of cinnamon bark and lemon peel essential oils. Food Nutrition8: 110-125.

8.       Silvis, I. C. J., Luning, P. A., Klose, N., Jansen, M., and van Ruth, S. M. (2019). Similarities and differences of the volatile profiles of six spices explored by proton transfer reaction mass spectrometry. Food Chemistry271: 318-327.

9.       Verma, R. S., Padalia, R. C., Chauhan, A., Singh, A., and Yadav, A. K. (2011). Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from north Indian Hills. Natural Product Research25(17): 1577-1584.

10.    Singh, G., Maurya, S., and Catalan, C. A. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology45(9): 1650-1661.

11.    Mehl, F., Marti, G., Boccard, J., Debrus, B., Merle, P., Delort, E., and Wolfender, J. L. (2014). Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: A metabolomic approach. Food Chemistry143: 325-335.

12.    Hui, L., He, L., Huan, L., XiaoLan, L., and AiGuo, Z. (2010). Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. African Journal of Microbiology Research4(4): 309-313.

13.    Kodal, S. P., and Aksu, Z. (2017). Phenolic pigment extraction from orange peels: Kinetic modelling. 15th International Conference on Environmental Science and Technology. Rhodes, Greece, 31: 798-803.

14.    Ramluckan, K., Moodley, K. G., and Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel116: 103-108.

15.    Al Juhaimi, F., and Özcan, M. M. (2018). Effect of cold press and Soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. Journal of Food Processing and Preservation42(1): 13417.

16.    Li, Y. Q., Kong, D. X., and Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Industrial Crops and Products41: 269-278.

17.    Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., and Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology52(2): 1212-1217.

18.    Ghasemzadeh, A., and Jaafar, H. Z. (2013). Profiling of phenolic compounds and their antioxidant and anticancer activities in Pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of malaysia. BMC Complementary and Alternative Medicine13(1): 341.

19.    Ghasemzadeh, A., Jaafar, H. Z., Rahmat, A., and Ashkani, S. (2015). Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) RM grown in different locations of malaysia. BMC Complementary and Alternative Medicine15(1): 335.

20.    Chen, X. K., and Ge, F. H. (2014). Chemical components from essential oil of Pandanus amaryllifolius leaves. Journal of Chinese Medicinal Materials, 37(4): 616-620.

21.    Kelly, G. S. (1999). Squalene and its potential clinical uses. Alternative Medicine Review: A Journal of Clinical Therapeutic 4(1): 29-36.

22.    Zeb, A., Ullah, F., Ayaz, M., Ahmad, S., and Sadiq, A. (2017). Demonstration of biological activities of extracts from Isodon rugosus wall. Ex benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complementary and Alternative Medicine17(1): 28.

23.    de Alencar, M. V. O. B., Islam, M. T., de Lima, R. M. T., Paz, M. F. C. J., dos Reis, A. C., da Mata, A. M. O. F., and Mubarak, M. S. (2018). Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA‐induced breast cancer. IUBMB Life, 71(2): 200-121.

24.    Driscoll, M. S., and Wagner, R. F. (2000). Clinical management of the acute sunburn reaction. CUTIS-NEW YORK66(1): 53-60.

25.    Borel, P., and Desmarchelier, C. (2018). Bioavailability of fat-soluble vitamins and phytochemicals in humans: Effects of genetic variation. Annual Review of Nutrition38: 69-96.

26.    Adhikari, L., Kotiyal, R., Pandey, M., Bharkatiya, M., Sematy, A., and Semalty, M. (2018). Effect of geographical location and type of extract on total phenol/flavon contents and antioxidant activity of different fruits extracts of Withania somniferaCurrent Drug Discovery Technologies. 15:1.