Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 62 - 69

 

 

 

 

CORROSION INHIBITION STUDY ON GLYCEROL AS SIMULTANEOUS GAS HYDRATE AND CORROSION INHIBITOR IN GAS PIPELINES

 

(Kajian Perencatan Kakisan oleh Gliserol sebagai Perencat Serentak untuk Hidrat Gas dan Kakisan dalam Saluran Paip Gas)

 

Vinayagam Sivabalan1,2, Belkhir Walid1,3, Yoann Madec1,4, Ali Qasim1,2, Bhajan Lal1,2*

 

1Chemical Engineering Department,

2CO2 Research Centre (CO2RES),

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia

3Department of Science and Engineering of Materials,

University Institute of Technology, 71100 Chalon-sur-Saône, France

4Department of Process Engineering,

National Superior Engineering School of Industrial Technologies (ENGSTI), 64000 Pau, France

 

*Corresponding author:  bhajan.lal@utp.edu.my

 

 

Received: 20 November 2019; Accepted: 23 January 2020

 

 

Abstract

Gas hydrate inhibitors (GHI) and Corrosion Inhibitors (CI) often tend to display antagonistic behaviour in flow assurance of oil and gas. Compatible GHI and CI that have no compromises are still under research and development. Latest researches are being done on multifunctional gas hydrate and corrosion inhibitor (GHCl). Glycerol has been tested for its inhibition performance for both hydrate and corrosion in various distinguished experiments. However, glycerol's corrosion inhibition on X52 mild steel in seawater environment has never been tested. In this work, the corrosion inhibitor property of glycerol on X52 mild steel in 3.5wt.% NaCl brine solution is investigated. The concentrations of glycerol used are 400, 600, 800, 1000, 5000, and 10000 ppm. The pH and conductivity of glycerol have been measured and the relationship between pH, conductivity and corrosion has been thoroughly discussed. The performance of glycerol has been studied further based on adsorption isotherms such as Langmuir, Frumkin, Temkin and Freundlich isotherm. The Temkin isotherm shows the best fit for adsorption isotherm with R2 of 0.97.

 

Keywords:  hydrate, corrosion, pH, conductivity, adsorption

 

Abstrak

Perencat hidrat gas (GHI) dan perencat kakisan (CI) sering menunjukkan kecenderungan antagonistik dalam penjaminan aliran minyak dan gas. GHI dan CI yang tidak mempunyai kompromi ialah masih dalam penyelidikan dan pembangunan. Penyelidikan terkini dilakukan pada perencat multifungsi (GHCl) yang boleh merencat hidrat dan kakisan. Gliserol telah diuji untuk prestasi perencatannya untuk hidrat dan kakisan dalam pelbagai eksperimen yang berbeza. Bagaimanapun, perencatan kakisan gliserol pada keluli lembut X52 dalam persekitaran air laut tidak pernah diuji. Dalam penyiasatan ini, sifat perencat kakisan gliserol pada keluli lembut X52 dalam larutan garam NaCl 3.5wt.% disiasat. Kepekatan gliserol yang digunakan ialah 400, 600, 800, 1000, 5000, dan 10000 ppm. Nilai pH dan konduktiviti gliserol telah diukur dan hubungan antara pH, konduktiviti dan kakisan telah dibincangkan dengan teliti. Prestasi gliserol telah dikaji lebih lanjut berdasarkan model isoterma penjerapan seperti model Langmuir, Frumkin, Temkin dan Freundlich. Model Temkin didapati paling sesuai untuk isoterma penjerapan dengan R2, 0.97.

 

Kata kunci:  hidrat, kakisan, pH, konduktiviti, penjerapan

 

References

1.       Sloan, Dendy; Koh, Carolyn; K.Sum, Amadeu; L.Ballard, Adam; Creek, Jefferson; Eaton, Michael; Lachance, Jason; McMullen, Norm; Palermo, Thierry; Shoup, George; Talley, L., Sloan, D., Koh, C., Sum, A., Windows, M., Corporation, M. and Sakajiri, A. (2011). Natural gas hydrates in flow assurance. In Elsevier Publisher.

2.       Theyab, M. A. (2018). Fluid flow assurance issues: Literature review. SciFed Journal of Petroleum, 2(1), 1-11.

3.       Khan, M. S., Lal, B., Keong, L. K. and Sabil, K. M. (2018). Experimental evaluation and thermodynamic modelling of AILs alkyl chain elongation on methane riched gas hydrate system. Fluid Phase Equilibria, 473: 300-309.

4.       Yaqub, S., Lal, B., Shariff, A. M., and Mellon, N. (2019). Unraveling the effect of sub-cooling temperatures on the kinetic performance of biopolymers for methane hydrate. Journal of Natural Gas Science and Engineering, 65(1): 68-81.

5.       Qasim, A., Khan, M. S., Lal, B. and Shariff, A. M. (2019). Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates. Journal of Molecular Liquids, 282: 106-114.

6.       Nashed, O., Dadebayev, D., Khan, M. S., Bavoh, C. B., Lal, B. and Shariff, A. M. (2018). Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. Journal of Molecular Liquids, 249(11): 886-891.

7.       Asrar, N., MacKay, B., Birketveit, Ø., Stopanicev, M., Jackson, J. E., Jenkins, A. ad Vittonato, J. (2016). Corrosion- the longest war. Oilfield Review, 28(2): 34-49.

8.       Yahya, S., Othman, N. K. and Ismail, M. C. (2019). Corrosion inhibition of steel in multiple flow loop under 3.5% NaCl in the presence of rice straw extracts, lignin and ethylene glycol. Engineering Failure Analysis, 100: 365-380.

9.       Khan, M. S., Mellon, N. B. and Lal, B. (n.d.). Preliminary experimental evaluation for methane (CH4) and carbon dioxide (CO2) gas hydrate mitigation.

10.    Nashed, O., Sabil, K. M., Ismail, L., Japper-Jaafar, A. and Lal, B. (2018). Mean induction time and isothermal kinetic analysis of methane hydrate formation in water and imidazolium based ionic liquid solutions. The Journal of Chemical Thermodynamics, 117: 147-154.

11.    Bavoh, C. B., Lal, B., Osei, H., Sabil, K. M. and Mukhtar, H. (2019). A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. Journal of Natural Gas Science and Engineering, 64(1): 52-71.

12.    Bavoh, C. B., Lal, B., Nashed, O., Khan, M. S., Lau, K. K. and Bustam, M. A. (2016). COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation. Chinese Journal of Chemical Engineering, 24(11): 1619-1624.

13.    Khan, M. S., Bavoh, C. B., Partoon, B., Lal, B., Bustam, M. A. and Shariff, A. M. (2017). Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. Journal of Molecular Liquids, 238(7): 533-539.

14.    Nam, N. D., Hien, P. Van, Hoai, N. T. and Thu, V. T. H. (2018). A study on the mixed corrosion inhibitor with a dominant cathodic inhibitor for mild steel in aqueous chloride solution. Journal of the Taiwan Institute of Chemical Engineers, 91: 556-569.

15.    Vu, N., Hien, P., Man, T., Hanh Thu, V., Tri, M. and Nam, N. (2017). A study on corrosion inhibitor for mild steel in ethanol fuel blend. Materials, 11(1): 59.

16.    Menendez, C. M., Jardine, J., Mok, W. Y., Ramachandran, S., Jovancicevic, V., & Bhattacharya, A. (2014). New sour gas corrosion inhibitor compatible with kinetic hydrate inhibitor. International Petroleum Technology Conference, pp. 1-9.

17.    Obanijesu, E. O., Gubner, R., Barifcani, A., Pareek, V. and Tade, M. O. (2014). The influence of corrosion inhibitors on hydrate formation temperature along the subsea natural gas pipelines. Journal of Petroleum Science and Engineering, 120: 239-252.

18.    Sheng, Q., Silveira, K. C. Da, Tian, W., Fong, C., Maeda, N., Gubner, R. and Wood, C. D. (2017). Simultaneous hydrate and corrosion inhibition with modified poly(vinyl caprolactam) polymers. Energy and Fuels, 31(7): 6724-6731.

19.    Moloney, J. J., Mok, W. Y. and Gamble, C. G. (2009). Compatible corrosion and kinetic hydrate inhibitors for wet sour gas transmission lines. NACE International: Corrosion 2009: pp. 09350.

20.    Schütze, M. (2002). Corrosion books: Handbook of corrosion engineering. By Pierre R. Roberge - Materials and Corrosion 4/2002. Materials and Corrosion, 53(4): 284-284.

21.    Dariva, G. C. and Galio, F. A. (2014). Corrosion inhibitors – principles, mechanisms and applications. In Developments in Corrosion Protection, 2014: pp. 365-379.

22.    Macdonald, D. D., Lewis, M., McLafferty, J., Maya-Visuet, E. and Peek, R. (2018). Electromagnetic induction corrosion control technology (EICCT). Materials and Corrosion, 69(4): 436-446.

23.    Burgazli, C. R., Navarrete, R. C. and Mead, S. L. (2005). New dual purpose chemistry for gas hydrate and corrosion inhibition. Journal of Canadian Petroleum Technology, 44(11): 47-50.

24.    Leinweber, D. and Feustel, M. (2009). Patent No. US007615102B2. United States.

25.    Chapoy, A., Burgass, R. and Tohidi, B. (2014). Hydrate inhibition in propylene glycol and glycerol systems. In 8th  International Conference on Gas Hydrates, pp. 1-8.

26.    Wu, H.-J. and Englezos, P. (2006). Inhibiting effect of triethylene glycol and glycerol on gas hydrate formation conditions. Journal of Chemical & Engineering Data, 51(5): 1811-1813.

27.    Li, X.-S., Wu, H.-J. and Englezos, P. (2006). Prediction of gas hydrate formation conditions in the presence of methanol, glycerol, ethylene glycol, and triethylene glycol with the statistical associating fluid theory equation of state. Industrial & Engineering Chemistry Research, 45(6): 2131-2137.

28.    Bavoh, C. B., Khan, M. S., Ting, V. J., Lal, B., Ofei, T. N., Ben-Awuah, J. and Shariff, A. B. M. (2018). The effect of acidic gases and thermodynamic inhibitors on the hydrates phase boundary of synthetic Malaysia natural gas. IOP Conference Series: Materials Science and Engineering, 458(1): 012016.

29.    Chi-Ucán, S. L., Castillo-Atoche, A., Castro Borges, P., Manzanilla-Cano, J. A., González-García, G., Patiño, R. and Díaz-Ballote, L. (2014). Inhibition effect of glycerol on the corrosion of copper in NaCl solutions at different pH values. Journal of Chemistry, 2014: 1-10.

30.    Zubaidi, I. Al, Ibrahim, H., Jones, R., Alzughaibi, M., Albayyadhi, M. and Darzi, F. (2016). Waste glycerol as new green inhibition for metal corrosion in acid medium. Proceedings of the 3rd International Conference of Fluid Flow, Heat and Mass Transfer, (162): 1-8.

31.    Corrales-Luna, M., Le Manh, T., Romero-Romo, M., Palomar-Pardavé, M. and Arce-Estrada, E. M. (2019). 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media. Corrosion Science, 2019: 85-99.

32.    Nashed, O., Koh, J. C. H. and Lal, B. (2016). Physical-chemical properties of aqueous TBAOH solution for gas hydrates promotion. Procedia Engineering, 148: 1351-1356.

33.    Bhattacharyya, L. and Rohrer, J. S. (Eds.). (2012). Applications of ion chromatography for pharmaceutical and biological products. John Wiley and Son Publisher.

34.    Zhu, Y., Free, M. L., Woollam, R. and Durnie, W. (2017). A review of surfactants as corrosion inhibitors and associated modeling. Progress in Materials Science, 90: 159-223.