Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 53 - 61
APPLICATION
OF MICROWAVE-ASSISTED EXTRACTION COUPLED WITH DISPERSIVE LIQUID-LIQUID MICROEXTRACTION FOR THE DETERMINATION
OF POLYCYCLIC AROMATIC HYDROCARBONS IN VEGETABLES
(Aplikasi Pengekstrakan Berbantukan Mikrogelombang
Gandingan dengan Pengekstrakan Mikro Cecair-Cecair Serakan bagi Penentukan
Hidrokarbon Aromatik Polisiklik dalam Sayur-Sayuran)
Chai Mee Kin1*,
Tan Yeong Hwang1, Wong Ling Shing2
1College of Engineering,
Universiti
Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
2Faculty of Health and Life Science,
INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai,
Negeri Sembilan, Malaysia
*Corresponding
author: mkchai@uniten.edu.my
Received: 20 November 2019;
Accepted: 21 January 2020
Abstract
Microwave-assisted extraction
(MAE) coupled with dispersive liquid-liquid microextraction (DLLME) followed by
gas- chromatography flame ionization detector (GC-FID) for the determination of
13 PAHs in vegetable samples was developed in this study. The analytical
performances of the optimized DLLME and MAE-DLLME including limit of detection
(LOD), limit of quantification (LOQ), precision, accuracy, relative extraction
recovery and relative extraction factor were validated and compared. The LOD of
DLLME and MAE-DLLME were in the range of 0.040-0.400 and 0.0200-0.080 µg/L,
respectively. For DLLME, precision and accuracy were 1.22-7.50% (RSD) and
71.77% to 90.93%, respectively; while for MAE-DLLME, were 0.77%-3.07% (RSD) and
83.65-98.42%, respectively. The relative extraction recovery was improved from
70.81% – 85.41% in DLLME to 85.79% - 99.61% in MAE-DLLME. The relative
enrichment factors were ranged from 126-156 and 165 to 202 for DLLME and
MAE-DLLME, respectively. The volume of extraction solvent was reduced from 50 µL
to 30 µL in MAE- DLLME. The overall analytical performances of MAE-DLLME is
better than DLLME. The application of proposed MAE- DLLME in real samples was
also investigated and discussed.
Keywords: dispersive liquid-liquid
microextraction, microwave-assisted extraction, polycyclic aromatic
hydrocarbons, extraction solvent
Abstrak
Pengekstrakan
berbantukan mikrogelombang (MAE) gandingan dengan pengekstrakan mikro
cecair-cecair serakan (DLLME) yang diikuti dengan gas kromatografi-pengesan
nyalaan ion (GC-FID) bagi penentukan 13 jenis hidrokarbon aromatik polisiklik
(PAHs) dalam sampel sayur-sayuran telah dibangunkan dalam kajian ini. Analisis
prestasi optimum DLLME dan MAE-DLLME seperti had pengesanan (LODs), kepersisan,
kejituan, perolehan semula pengekstrakan secara relatif dan faktor-faktor
pengayaan secara relatif telah disahkan dan dibandingkan. Had pengesanan (LODs)
bagi DLLME dan MAE-DLLME adalah dalam lingkungan 0.040-0.400 dan 0.0200-0.080
μg/L, masing-masing. Bagi DLLME, kepersisan dan kejituan adalah dalam
lingkungan 1.22-7.50% dan 71.77-90.93%, masing-masing; manakala bagi MAE-DLLME,
adalah dalam lingkungan 0.77-3.07% dan 83.65-98.42%, masing-masing. Perolehan
semula pengekstrakan secara relatif telah ditingkatkan daripada 70.81-85.41%
pada DLLME hingga 85.79 - 99.61% pada MAE-DLLME. Faktor-faktor pengayaan secara
relatif adalah 126-156 dan 165-202 bagi DLLME dan MAE-DLLME, masing-masing. Jumlah pengekstrakan
pelarut yang digunakan telah dikurangkan daripada 50 μL di DLLME kepada 30
μL di MAE-DLLME. Prestasi keseluruhan analisis MAE-DLLME adalah lebih baik
daripada DLLME. Penggunaan MAE-DLLME dalam analisis sampel sebenar juga
disiasat dan dibincangkan.
Kata kunci: pengekstrakan mikro cecair-cecair serakan, pengekstrakan
berbantukan mikrogelombang, hidrokarbon aromatik polisiklik, pelarut
pengekstrakan
References
1.
Li, H., Zhu, D., Lu, X., Du, H., Guan,
S. and Chen, Z. (2018). Determination and risk assessment of sixteen polycyclic aromatic
hydrocarbons in vegetables. Journal of Environmental Science
and Health, Part A, 53(2): 116-123.
2.
Singh, L. and Agarwal, T. (2018). PAHs in Indian diet: Assessing the cancer
risk. Chemosphere, 202: 366-376.
3.
Soceanu, A., Dobrinas, S., Stanciu, G.
and Popescu, V. (2014). Polycyclic aromatic hydrocarbons in vegetables grown in
urban and rural areas. Environmental
Engineering and Management Journal, 13(9): 2311-2315.
4.
International Agency for research on
cancer. (2017). IARC Monographs on the evaluation of carcinogenic risks to
humans. http://monographs.iarc.fr/ENG/Classification/latest_classif.php.
[Access online 18 April 2019].
5.
European Commission (2002). Opinion of
the scientific committee on food on the risks to human health of polycyclic
aromatic hydrocarbons in food.
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-
com_scf_out153_en.pdf. [Access online 19 April 2019].
6.
Saraji, M., and Boroujeni, M. K. (2013).
Recent developments in dispersive liquid-liquid microextraction microextraction
techniques. Analytical and Bioanalytical
Chemistry, 406: 2027-2066.
7.
Rezaee, M., Assadi, Y., Milani Hosseini,
M.R., Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic
compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography. A, 1116
(1-2): 1-9.
8.
Peng, G., Lu, Y., He, Q., Mmereki, D.,
Zhou, G., Chen, J. and Tang, X. (2016). Dispersive liquid–liquid
microextraction using low-toxic solvent for the determination of heavy metals
in water samples by inductively coupled plasma–mass spectrometry. Journal of AOAC International, 99 (1):
260-266.
9.
Chai, M. K., Chander, P. D. and Wong, L.
S. (2016). Modified dispersive liquid-liquid microextraction using green
solvent for extraction of polycyclic aromatic hydrocarbosn (PAHs) in vegetable
samples. Malaysian Journal of Analytical
Sciences, 20(1): 14 – 20.
10.
Wang, H., Ding, J. and Ren, N. (2016).
Recent advances in microwave-assisted extraction of trace organic pollutants
from food and environmental samples. Trends
in Analytical Chemistry, 75: 197-208.
11.
Campillo, N., Viñas, P.,
Martínez-Castillo, N. and Hernández-Córdoba, M. (2011). Determination of
volatile nitrosamines in meat products by microwave-assisted extraction and
dispersive liquid-liquid microextraction coupled to gas chromatography-mass
spectrometry. Journal of Chromatography A,
1218: 1815-1221.
12.
Mahmoudpour, M., Mohtadinia, J.,
Mousavi, M. M., Ansarin, M. and Nemati, M. (2016). Application of the
microwave-assisted extraction and dispersive liquid–liquid microextraction for
the analysis of PAHs in smoked rice. Food
Analytical Methods, 10(1): 1-10.
13.
Mari, A., Ahmadi-Jouibari, T. and Nazir,
F. (2016). Application of microwave-assisted dispersive liquid– liquid
microextraction and graphite furnace atomic absorption spectrometry for
ultra-trace determination of lead and cadmium in cereals and agricultural. International Journal of Environmental
Analytical Chemistry. 96: 271-283.
14.
Tan, Y. H., Chai, M. K. and Wong, L. S.
(2018). The effects of parameters on the efficiency of DLLME in extracting of
PAHs from vegetable samples. International
Journal of Engineering and Technology, 7 (4.35): 15-21.
15.
ICH Expert Working Group. (2005).
Validation of analytical procedures: text and methodology Q2 (R1).
16.
Xu, F., Liu, L., Wei, W. and Xu, R.
(2017). Determination of five endosulfan pesticides in the fish pond water by
dispersive liquid-liquid microextraction combined with GC-MS. Forensic Sciences Research, 2(1): 1-6.
17.
Wagner, I. and Stichlmair, J. (2001).
The effect of viscosity on mass transfer in pulsed sieve-tray extraction
columns. Chemical Engineering and
Technology, 24 (6): 616-619.
18.
Camargo, M. C. R., and Toledo, M. C. F.
(2003). Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control, 14(1): 49-53.
19.
Ashraf, M. W. and Salam, A. (2012).
Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in
Saudi Arabia. Bulletin of Environmental
Contamination and Toxicology, 88 (4): 543-547.
20.
Zhao, X., Liu, X., Zhao, Z., Huang, C.,
Zhang, M., Wang, H. and Wang, X. (2009). Homogeneous liquid-liquid extraction
combined with high performance liquid chromatography-fluorescence detection for
determination of polycyclic aromatic hydrocarbons in vegetables. Journal of Separation Science, 32(12):
2051-2057.
21.
Lima, G. P. P., and Vianello, F. (2011).
Review on the main differences between organic and conventional plant-based
foods. International Journal of Food
Science and Technology, 46: 1-13.
22.
Dugaya, A., Herrenknechtb , C., Czokc,
M., Guyona, F and Pages, N. (2002). New procedure for selective extraction of
polycyclic aromatic hydrocarbons in plants for gas chromatographic–mass
spectrometric analysis. Journal of
Chromatography A, 938: 1-7.
23.
Paris, A., Ledauphin, J., Poinot, P. and
Gaillard, J. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables:
Origin, analysis, and occurrence. Environmental
Pollution, 234: 96-106.