Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 53 - 61

 

 

 

 

APPLICATION OF MICROWAVE-ASSISTED EXTRACTION COUPLED WITH DISPERSIVE LIQUID-LIQUID MICROEXTRACTION FOR THE DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN VEGETABLES

 

(Aplikasi Pengekstrakan Berbantukan Mikrogelombang Gandingan dengan Pengekstrakan Mikro Cecair-Cecair Serakan bagi Penentukan Hidrokarbon Aromatik Polisiklik dalam Sayur-Sayuran)

 

Chai Mee Kin1*, Tan Yeong Hwang1, Wong Ling Shing2

 

1College of Engineering,

Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia

2Faculty of Health and Life Science,

INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author:  mkchai@uniten.edu.my

 

 

Received: 20 November 2019; Accepted: 21 January 2020

 

 

Abstract

Microwave-assisted extraction (MAE) coupled with dispersive liquid-liquid microextraction (DLLME) followed by gas- chromatography flame ionization detector (GC-FID) for the determination of 13 PAHs in vegetable samples was developed in this study. The analytical performances of the optimized DLLME and MAE-DLLME including limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, relative extraction recovery and relative extraction factor were validated and compared. The LOD of DLLME and MAE-DLLME were in the range of 0.040-0.400 and 0.0200-0.080 µg/L, respectively. For DLLME, precision and accuracy were 1.22-7.50% (RSD) and 71.77% to 90.93%, respectively; while for MAE-DLLME, were 0.77%-3.07% (RSD) and 83.65-98.42%, respectively. The relative extraction recovery was improved from 70.81% – 85.41% in DLLME to 85.79% - 99.61% in MAE-DLLME. The relative enrichment factors were ranged from 126-156 and 165 to 202 for DLLME and MAE-DLLME, respectively. The volume of extraction solvent was reduced from 50 µL to 30 µL in MAE- DLLME. The overall analytical performances of MAE-DLLME is better than DLLME. The application of proposed MAE- DLLME in real samples was also investigated and discussed.

 

Keywords: dispersive liquid-liquid microextraction, microwave-assisted extraction, polycyclic aromatic hydrocarbons, extraction solvent

 

Abstrak

Pengekstrakan berbantukan mikrogelombang (MAE) gandingan dengan pengekstrakan mikro cecair-cecair serakan (DLLME) yang diikuti dengan gas kromatografi-pengesan nyalaan ion (GC-FID) bagi penentukan 13 jenis hidrokarbon aromatik polisiklik (PAHs) dalam sampel sayur-sayuran telah dibangunkan dalam kajian ini. Analisis prestasi optimum DLLME dan MAE-DLLME seperti had pengesanan (LODs), kepersisan, kejituan, perolehan semula pengekstrakan secara relatif dan faktor-faktor pengayaan secara relatif telah disahkan dan dibandingkan. Had pengesanan (LODs) bagi DLLME dan MAE-DLLME adalah dalam lingkungan 0.040-0.400 dan 0.0200-0.080 μg/L, masing-masing. Bagi DLLME, kepersisan dan kejituan adalah dalam lingkungan 1.22-7.50% dan 71.77-90.93%, masing-masing; manakala bagi MAE-DLLME, adalah dalam lingkungan 0.77-3.07% dan 83.65-98.42%, masing-masing. Perolehan semula pengekstrakan secara relatif telah ditingkatkan daripada 70.81-85.41% pada DLLME hingga 85.79 - 99.61% pada MAE-DLLME. Faktor-faktor pengayaan secara relatif adalah 126-156 dan 165-202 bagi DLLME dan MAE-DLLME, masing-masing.  Jumlah  pengekstrakan pelarut yang digunakan telah dikurangkan daripada 50 μL di DLLME kepada 30 μL di MAE-DLLME. Prestasi keseluruhan analisis MAE-DLLME adalah lebih baik daripada DLLME. Penggunaan MAE-DLLME dalam analisis sampel sebenar juga disiasat dan dibincangkan.

 

Kata kunci: pengekstrakan mikro cecair-cecair serakan, pengekstrakan berbantukan mikrogelombang, hidrokarbon aromatik polisiklik, pelarut pengekstrakan

 

References

1.       Li, H., Zhu, D., Lu, X., Du, H., Guan, S. and Chen, Z. (2018). Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables. Journal of Environmental Science and Health, Part A, 53(2): 116-123.

2.       Singh, L. and Agarwal, T. (2018). PAHs in Indian diet: Assessing the cancer risk. Chemosphere, 202: 366-376.

3.       Soceanu, A., Dobrinas, S., Stanciu, G. and Popescu, V. (2014). Polycyclic aromatic hydrocarbons in vegetables grown in urban and rural areas. Environmental Engineering and Management Journal, 13(9): 2311-2315.

4.       International Agency for research on cancer. (2017). IARC Monographs on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Classification/latest_classif.php. [Access online 18 April 2019].

5.       European Commission (2002). Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food. https://ec.europa.eu/food/sites/food/files/safety/docs/sci- com_scf_out153_en.pdf. [Access online 19 April 2019].

6.       Saraji, M., and Boroujeni, M. K. (2013). Recent developments in dispersive liquid-liquid microextraction microextraction techniques. Analytical and Bioanalytical Chemistry, 406: 2027-2066.

7.       Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography. A, 1116 (1-2): 1-9.

8.       Peng, G., Lu, Y., He, Q., Mmereki, D., Zhou, G., Chen, J. and Tang, X. (2016). Dispersive liquid–liquid microextraction using low-toxic solvent for the determination of heavy metals in water samples by inductively coupled plasma–mass spectrometry. Journal of AOAC International, 99 (1): 260-266.

9.       Chai, M. K., Chander, P. D. and Wong, L. S. (2016). Modified dispersive liquid-liquid microextraction using green solvent for extraction of polycyclic aromatic hydrocarbosn (PAHs) in vegetable samples. Malaysian Journal of Analytical Sciences, 20(1): 14 – 20.

10.    Wang, H., Ding, J. and Ren, N. (2016). Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. Trends in Analytical Chemistry, 75: 197-208.

11.    Campillo, N., Viñas, P., Martínez-Castillo, N. and Hernández-Córdoba, M. (2011). Determination of volatile nitrosamines in meat products by microwave-assisted extraction and dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry. Journal of Chromatography A, 1218: 1815-1221.

12.    Mahmoudpour, M., Mohtadinia, J., Mousavi, M. M., Ansarin, M. and Nemati, M. (2016). Application of the microwave-assisted extraction and dispersive liquid–liquid microextraction for the analysis of PAHs in smoked rice. Food Analytical Methods, 10(1): 1-10.

13.    Mari, A., Ahmadi-Jouibari, T. and Nazir, F. (2016). Application of microwave-assisted dispersive liquid– liquid microextraction and graphite furnace atomic absorption spectrometry for ultra-trace determination of lead and cadmium in cereals and agricultural. International Journal of Environmental Analytical Chemistry. 96: 271-283.

14.    Tan, Y. H., Chai, M. K. and Wong, L. S. (2018). The effects of parameters on the efficiency of DLLME in extracting of PAHs from vegetable samples. International Journal of Engineering and Technology, 7 (4.35): 15-21.

15.    ICH Expert Working Group. (2005). Validation of analytical procedures: text and methodology Q2 (R1).

16.    Xu, F., Liu, L., Wei, W. and Xu, R. (2017). Determination of five endosulfan pesticides in the fish pond water by dispersive liquid-liquid microextraction combined with GC-MS. Forensic Sciences Research, 2(1): 1-6.

17.    Wagner, I. and Stichlmair, J. (2001). The effect of viscosity on mass transfer in pulsed sieve-tray extraction columns. Chemical Engineering and Technology, 24 (6): 616-619.

18.    Camargo, M. C. R., and Toledo, M. C. F. (2003). Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control, 14(1): 49-53.

19.    Ashraf, M. W. and Salam, A. (2012). Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bulletin of Environmental Contamination and Toxicology, 88 (4): 543-547.

20.    Zhao, X., Liu, X., Zhao, Z., Huang, C., Zhang, M., Wang, H. and Wang, X. (2009). Homogeneous liquid-liquid extraction combined with high performance liquid chromatography-fluorescence detection for determination of polycyclic aromatic hydrocarbons in vegetables. Journal of Separation Science, 32(12): 2051-2057.

21.    Lima, G. P. P., and Vianello, F. (2011). Review on the main differences between organic and conventional plant-based foods. International Journal of Food Science and Technology, 46: 1-13.

22.    Dugaya, A., Herrenknechtb , C., Czokc, M., Guyona, F and Pages, N. (2002). New procedure for selective extraction of polycyclic aromatic hydrocarbons in plants for gas chromatographic–mass spectrometric analysis. Journal of Chromatography A, 938: 1-7.

23.    Paris, A., Ledauphin, J., Poinot, P. and Gaillard, J. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 234: 96-106.