Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 42 - 52
APPLICATION OF BOX-BEHNKEN DESIGN WITH RESPONSE
SURFACE METHODOLOGY FOR OPTIMIZING OXYGEN COLOUR INDICATOR FOR ACTIVE PACKAGING
(Aplikasi Reka Bentuk
Box-Behnken dengan Kaedah Gerak Balas Permukaan untuk Mengoptimumkan Penunjuk
Oksigen Berwarna bagi Pembungkus Aktif)
Aishah Mohd
Marsin1 and Ida Idayu Muhamad1,2*
1Department of Bioprocess
& Polymer Engineering, School of Chemical and Energy Engineering, Faculty
of Engineering,
2Biomaterial Cluster, V01,
IJN-UTM Cardiovasular Engineering Centre, Faculty of Engineering
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: idaidayu@utm.my
Received: 10 October 2019;
Accepted: 7 January 2020
Abstract
The present work
develops carrageenan-based oxygen colour indicator strip films using redox dye
to improve the mechanical properties and efficiency of the strip in indicating
the presence of oxygen. The optimized percentages of carrageenan (0.6-1.0%) as
base medium, titanium dioxide (3.2-4.8%) as semiconductor photocatalyst,
glycerol (3.6-4.8%) as sacrificial electron donor and methylene blue as redox
dye were determined by applying Box-Behnken design and response surface
methodology. It aims to achieve optimum film formulation with good mechanical
properties and high colour change values
after UV-activation compared to original colour. The indicator strip
film formed whitish-light blue colour after activated with ultraviolet (UV)
light and turned to original blue colour after exposure to oxygen. FTIR result
shows higher peak on spectra curve in the range of 500 to 750 cm-1
and 2850 to 3750 cm-1 proving
the
disruption of H-bonds between glycerol and carrageenan after the glycerol
molecules were oxidized by the photogenerated holes in TiO2.
Depending on the ratio of carrageenan, titanium dioxide and glycerol, the
optimum formulation that indicates a protrude colour difference (73.9 ±
2.51) with improved tensile properties (3.39 ±
1.76) has the potential to be used as carrageenan-based
oxygen indicator film for active packaging.
Keywords: oxygen colour indicator, redox dye,
carrageenan, titanium dioxide, methylene blue
Abstrak
Kerja ini menghasilkan
filem jalur penunjuk oksigen berwarna berasaskan karagenan menggunakan pewarna
redoks untuk meningkatkan sifat mekanikal dan kecekapan filem jalur dalam
menunjukkan perubahan warna dengan kehadiran oksigen. Peratusan optimum
karagenan (0.6-1.0%) sebagai medium asas, titanium dioksida (3.2-4.8%) sebagai
fotomangkin semikonduktor, gliserol (3.6-4.8%) sebagai penderma elektron karbon
dan metilena biru sebagai pewarna redoks ditentukan dengan menggunakan reka
bentuk Box-Behnken dan kaedah gerak belas permukaan. Ia bertujuan untuk
mencapai perumusan filem optimum dengan ciri-ciri mekanikal yang baik dan nilai
perubahan warna yang tinggi selepas UV diaktifkan berbanding warna asal.
Penunjuk jalur filem bertukar ke warna putih kebiruan selepas diaktifkan dengan
cahaya ultraungu (UV) dan bertukar kepada warna biru pekat asal selepas
pendedahan kepada oksigen. Keputusan FTIR menunjukkan lengkung spektrum yang
lebih tinggi dalam julat panjang gelombang 500 hingga 750 cm-1 dan
2850 hingga 3750 cm-1 yang membuktikan gangguan ikatan-H antara
gliserol dan karagenan selepas gliserol terdioksida melalui lubang yang
dihasilkan selepas pengaktifan UV di dalam TiO2. Bergantung kepada
nisbah karagenan, titanium dioksida dan gliserol, rumusan optimum yang
menunjukkan perbezaan warna yang menonjol (73.9 ± 2.51) dengan sifat tegangan
yang lebih baik (3.39 ± 1.76) berpotensi untuk digunakan sebagai penunjuk
oksigen berwarna berasaskan karrageenan bagi pembungkus aktif.
Kata kunci: penunjuk warna
oksigen, pewarna redoks, karagenan, titanium dioksida, metilena biru
References
1.
Mills, A. (2005). Oxygen indicators and intelligent inks for packaging
food. Chemical Society Reviews, 34(12): 1003-1011.
2.
Biji, K. B., Ravishanka, C. N. and Mohan, C. O. (2015). Smart packaging
systems for food applications: a review. Journal Food Science Technology,
52(10):6125-6135.
3.
Kelly, C., Yusufu, D., Okkelman, I., Banerjee, S., Kerry, J. P., Mills, A.
and Papkovsky, D. B. (2020). Extruded phophorescence based oxygen sensors for
large-scale packaging applications. Sensors & Actuators: B. Chemicals,
304:1-8.
4.
Wen, J., Huang, S., Sun, Y., Chen, Z., Wang, Y., Li, H. and Liu, X.
(2018). Titanium dioxide nanotube-based oxygen indicator for modified
atmosphere packaging: efficiency and accuracy. Materials, 11(12): 1–10.
5.
Mills, A. and Hazafy, D. (2009). Nanocrystalline SnO2-based,
UVB-activated, colourimetric oxygen indicator. Sensors and Actuators, B:
Chemical, 136(2): 344-349.
6.
Mills, A., Hazafy, D. and Lawrie, K. (2011). Novel photocatalyst-based
colourimetric indicator for oxygen. Catalysis Today, 161(1): 59-63.
7.
Vu, C. H. T. and Won, K. (2013). Novel water-resistant UV-activated oxygen
indicator for intelligent food packaging. Food Chemistry, 140 (1-2):
52-56.
8.
Lee, S. K., Mills, A. and Lepre, A. (2004). An intelligence ink for
oxygen. Chemical Communications, 10(17): 1912-1913.
9.
Lee, S. K., Sheridan, M. and Mills, A. (2005). Novel UV-activated
colorimetric oxygen indicator. Chemical Materials, 17(10): 2744-2751.
10.
Deshwal, G. K., Panjagari, N. R., Badola, R., Singh, A. K., Minz, P. S.,
Ganguly, S. and Alam, T. (2018). Characterization of biopolymer-based
UV-activated intelligent oxygen indicator for food-packaging applications. Journal
of Packaging Technology and Research, 2(1): 29-43.
11.
Roberts, L., Lines, R., Reddy, S. and Hay, J. (2011). Investigation of
polyviologens as oxygen indicators in food packaging. Sensors and Actuators,
B: Chemical, 152(1): 63-67.
12.
Bessergenev, V. G., Mateus, M. C., Rego, A. M. B., Hantusch, M. and
Burkel, E. (2015). An improvement of photochatalytic activity of TiO2
Degussa P25 powder. Applied Catalysis A: General, 500: 40-50.
13.
Mohd Marsin, A. and Muhamad, I. I. (2016). Effects of kappa carrageenan
and glycerol in purple sweet potato starch based edible film. Jurnal
Teknologi, 78(6): 163-168.
14.
Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X. and Jiang, S.
(2018). Films based on K-carrageenan incorporated with curcumin for freshness
monitoring. Food Hydrocolloids, 83: 134-142.
15.
Vu, C. H. T. and Won, K. (2014). Leaching-resistant carrageenan-based
colorimetric oxygen indicator films for intelligent food packaging. Journal
of Agricultural and Food Chemistry, 62: 7263-7267.
16.
Avachat, A. M., Gujar, K. N. and Wagh, K. V. (2013). Development and
evaluation of tamarind seed xyloglucan-based mucoadhesive buccal films of
rizatriptan benzoate. Carbohydrate Polymers, 91(2): 537-542.
17.
Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish
gelatin films added with gellan and k-carrageenan. LWT - Food Science and
Technology, 40:766-774.
18.
Rukmanikrishnan, B., Soo K., S., Lee, J. and Lee, J. (2019). Effect of TiO2
on highly elastic, stretchable UV protective nanocomposite films formed by
using a combination of k-Carrageenan, xanthan gum and gellan gum. International
Journal of Biological Macromolecules, 123: 1020-1027.
19.
Rhim, J. W. (2012). Physical-mechanical properties of agar/k-carrageenan
blend film and derived clay nanocomposite film. Journal of Food Science,
77(12): 66-73.
20.
Abdou, E. S. and Sorour, M. A. (2014). Preparation and characterization of
starch/carrageenan edible films. International Food Research Journal,
21(1): 189-193.
21.
Oun, A. A. and Rhim, J. W. (2017). Carrageenan-based hydrogels and films:
Effect of ZnO and CuO nanoparticles on the physical, mechanical, and
antimicrobial properties. Food Hydrocolloids, 67: 45-53.
22.
Son, E. J., Lee, J. S., Lee, M., Vu, C. H. T., Lee, H., Won, K. and Park,
C. B. (2015). Self-adhesive graphene oxide-wrapped TiO2 nanoparticles
for UV-activated colorimetric oxygen detection. Sensors and Actuators, B:
Chemical, 213: 322-328.
23.
Mills, A., Tommons, C., Bailey, R. T., Catriona Tedford, M. and Crilly, P.
J. (2008). UV-activated luminescence/colourimetric O2 indicator. International
Journal of Photoenergy, 547301: 1-6.
24.
Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V.,
Chatzilazarou, A. and Tegou, E. (2006). Applications of Fourier
transform-infrared spectroscopy to edible oils. Analytica Chimica Acta,
573 (574): 459-465.
25.
Mihindukularuriya, S. D. F. (2013). Oxygen detection using UV-activated
electrospun poly(ethylene oxide) fibers encapsulated with TiO2
nanoparticles. Journal of Materials Science, 48: 5489-5498.
26.
Mihailović, D., Šaponjić, Z., Radoičić, M.,
Radetić, T., Jovančić, P., Nedeljković, J. and
Radetić, M. (2010). Functionalization of polyester fabrics with alginates
and TiO2 nanoparticles. Carbohydrate Polymers, 79(3):
526-532.