Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 42 - 52

 

 

 

 

APPLICATION OF BOX-BEHNKEN DESIGN WITH RESPONSE SURFACE METHODOLOGY FOR OPTIMIZING OXYGEN COLOUR INDICATOR FOR ACTIVE PACKAGING

 

(Aplikasi Reka Bentuk Box-Behnken dengan Kaedah Gerak Balas Permukaan untuk Mengoptimumkan Penunjuk Oksigen Berwarna bagi Pembungkus Aktif)

 

Aishah Mohd Marsin1 and Ida Idayu Muhamad1,2*

 

1Department of Bioprocess & Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering,

2Biomaterial Cluster, V01, IJN-UTM Cardiovasular Engineering Centre, Faculty of Engineering
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  idaidayu@utm.my

 

 

Received: 10 October 2019; Accepted: 7 January 2020

 

 

Abstract

The present work develops carrageenan-based oxygen colour indicator strip films using redox dye to improve the mechanical properties and efficiency of the strip in indicating the presence of oxygen. The optimized percentages of carrageenan (0.6-1.0%) as base medium, titanium dioxide (3.2-4.8%) as semiconductor photocatalyst, glycerol (3.6-4.8%) as sacrificial electron donor and methylene blue as redox dye were determined by applying Box-Behnken design and response surface methodology. It aims to achieve optimum film formulation with good mechanical properties and high colour change values  after UV-activation compared to original colour. The indicator strip film formed whitish-light blue colour after activated with ultraviolet (UV) light and turned to original blue colour after exposure to oxygen. FTIR result shows higher peak on spectra curve in the range of 500 to 750 cm-1 and 2850 to 3750 cm-1 proving the disruption of H-bonds between glycerol and carrageenan after the glycerol molecules were oxidized by the photogenerated holes in TiO2. Depending on the ratio of carrageenan, titanium dioxide and glycerol, the optimum formulation that indicates a protrude colour difference (73.9 ± 2.51) with improved tensile properties (3.39 ± 1.76) has the potential to be used as carrageenan-based oxygen indicator film for active packaging.

 

Keywords:  oxygen colour indicator, redox dye, carrageenan, titanium dioxide, methylene blue

 

Abstrak

Kerja ini menghasilkan filem jalur penunjuk oksigen berwarna berasaskan karagenan menggunakan pewarna redoks untuk meningkatkan sifat mekanikal dan kecekapan filem jalur dalam menunjukkan perubahan warna dengan kehadiran oksigen. Peratusan optimum karagenan (0.6-1.0%) sebagai medium asas, titanium dioksida (3.2-4.8%) sebagai fotomangkin semikonduktor, gliserol (3.6-4.8%) sebagai penderma elektron karbon dan metilena biru sebagai pewarna redoks ditentukan dengan menggunakan reka bentuk Box-Behnken dan kaedah gerak belas permukaan. Ia bertujuan untuk mencapai perumusan filem optimum dengan ciri-ciri mekanikal yang baik dan nilai perubahan warna yang tinggi selepas UV diaktifkan berbanding warna asal. Penunjuk jalur filem bertukar ke warna putih kebiruan selepas diaktifkan dengan cahaya ultraungu (UV) dan bertukar kepada warna biru pekat asal selepas pendedahan kepada oksigen. Keputusan FTIR menunjukkan lengkung spektrum yang lebih tinggi dalam julat panjang gelombang 500 hingga 750 cm-1 dan 2850 hingga 3750 cm-1 yang membuktikan gangguan ikatan-H antara gliserol dan karagenan selepas gliserol terdioksida melalui lubang yang dihasilkan selepas pengaktifan UV di dalam TiO2. Bergantung kepada nisbah karagenan, titanium dioksida dan gliserol, rumusan optimum yang menunjukkan perbezaan warna yang menonjol (73.9 ± 2.51) dengan sifat tegangan yang lebih baik (3.39 ± 1.76) berpotensi untuk digunakan sebagai penunjuk oksigen berwarna berasaskan karrageenan bagi pembungkus aktif.

 

Kata kunci:  penunjuk warna oksigen, pewarna redoks, karagenan, titanium dioksida, metilena biru

 

References

1.       Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 34(12): 1003-1011.

2.       Biji, K. B., Ravishanka, C. N. and Mohan, C. O. (2015). Smart packaging systems for food applications: a review. Journal Food Science Technology, 52(10):6125-6135.

3.       Kelly, C., Yusufu, D., Okkelman, I., Banerjee, S., Kerry, J. P., Mills, A. and Papkovsky, D. B. (2020). Extruded phophorescence based oxygen sensors for large-scale packaging applications. Sensors & Actuators: B. Chemicals, 304:1-8.

4.       Wen, J., Huang, S., Sun, Y., Chen, Z., Wang, Y., Li, H. and Liu, X. (2018). Titanium dioxide nanotube-based oxygen indicator for modified atmosphere packaging: efficiency and accuracy. Materials, 11(12): 1–10.

5.       Mills, A. and Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators, B: Chemical, 136(2): 344-349.

6.       Mills, A., Hazafy, D. and Lawrie, K. (2011). Novel photocatalyst-based colourimetric indicator for oxygen. Catalysis Today, 161(1): 59-63.

7.       Vu, C. H. T. and Won, K. (2013). Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry, 140 (1-2): 52-56.

8.       Lee, S. K., Mills, A. and Lepre, A. (2004). An intelligence ink for oxygen. Chemical Communications, 10(17): 1912-1913.

9.       Lee, S. K., Sheridan, M. and Mills, A. (2005). Novel UV-activated colorimetric oxygen indicator. Chemical Materials, 17(10): 2744-2751.

10.    Deshwal, G. K., Panjagari, N. R., Badola, R., Singh, A. K., Minz, P. S., Ganguly, S. and Alam, T. (2018). Characterization of biopolymer-based UV-activated intelligent oxygen indicator for food-packaging applications. Journal of Packaging Technology and Research, 2(1): 29-43.

11.    Roberts, L., Lines, R., Reddy, S. and Hay, J. (2011). Investigation of polyviologens as oxygen indicators in food packaging. Sensors and Actuators, B: Chemical, 152(1): 63-67.

12.    Bessergenev, V. G., Mateus, M. C., Rego, A. M. B., Hantusch, M. and Burkel, E. (2015). An improvement of photochatalytic activity of TiO2 Degussa P25 powder. Applied Catalysis A: General, 500: 40-50.

13.    Mohd Marsin, A. and Muhamad, I. I. (2016). Effects of kappa carrageenan and glycerol in purple sweet potato starch based edible film. Jurnal Teknologi, 78(6): 163-168.

14.    Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X. and Jiang, S. (2018). Films based on K-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83: 134-142.

15.    Vu, C. H. T. and Won, K. (2014). Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging. Journal of Agricultural and Food Chemistry, 62: 7263-7267.

16.    Avachat, A. M., Gujar, K. N. and Wagh, K. V. (2013). Development and evaluation of tamarind seed xyloglucan-based mucoadhesive buccal films of rizatriptan benzoate. Carbohydrate Polymers, 91(2): 537-542.

17.    Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and k-carrageenan. LWT - Food Science and Technology, 40:766-774.

18.    Rukmanikrishnan, B., Soo K., S., Lee, J. and Lee, J. (2019). Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. International Journal of Biological Macromolecules, 123: 1020-1027.

19.    Rhim, J. W. (2012). Physical-mechanical properties of agar/k-carrageenan blend film and derived clay nanocomposite film. Journal of Food Science, 77(12): 66-73.

20.    Abdou, E. S. and Sorour, M. A. (2014). Preparation and characterization of starch/carrageenan edible films. International Food Research Journal, 21(1): 189-193.

21.    Oun, A. A. and Rhim, J. W. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids, 67: 45-53.

22.    Son, E. J., Lee, J. S., Lee, M., Vu, C. H. T., Lee, H., Won, K. and Park, C. B. (2015). Self-adhesive graphene oxide-wrapped TiO2 nanoparticles for UV-activated colorimetric oxygen detection. Sensors and Actuators, B: Chemical, 213: 322-328.

23.    Mills, A., Tommons, C., Bailey, R. T., Catriona Tedford, M. and Crilly, P. J. (2008). UV-activated luminescence/colourimetric O2 indicator. International Journal of Photoenergy, 547301: 1-6.

24.    Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A. and Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573 (574): 459-465.

25.    Mihindukularuriya, S. D. F. (2013). Oxygen detection using UV-activated electrospun poly(ethylene oxide) fibers encapsulated with TiO2 nanoparticles. Journal of Materials Science, 48: 5489-5498.

26.    Mihailović, D., Šaponjić, Z., Radoičić, M., Radetić, T., Jovančić, P., Nedeljković, J. and Radetić, M. (2010). Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydrate Polymers, 79(3): 526-532.