Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 33 - 41
AGAROSE-CHITOSAN-INTERGRATED
MULTIWALLED CARBON NANOTUBES FILM SOLID PHASE MICROEXTRACTION COMBINED WITH
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE DETERMINATION OF TRICYCLIC ANTIDEPRESSANT
DRUGS IN AQUEOUS SAMPLES
(Filem Agarosa-Kitosan Bersepadu Nanotiub Kabon Berbilang
Dinding Pengestrakan Mikro Fasa Pepejal Digabungkan Dengan Kromatografi Cecair
Prestasi Tinggi-Pengesanan Ultralembayung Untuk Penentuan Anti-Murung Trisiklik Di Dalam Sampel Akueus)
Wan Nazihah Wan Ibrahim1*,
Mohd Marsin Sanagi2, Nor Suhaila Mohammad Hanapi1, Nursyamsyila
Mat Hadzir1, Noorfatimah Yahaya3, Sazlinda Kamaruzaman4
1Faculty
of Applied Science,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Department
of Chemistry, Faculty of Science,
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
3Integrative
Medicine Cluster, Advanced Medical and Dental Institute,
Universiti
Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
4Department
of Chemistry, Faculty of Science,
Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding
author: wannazihah@uitm.edu.my
Received: 20 November 2019;
Accepted: 15 January 2020
Abstract
Agarose-chitosan-integrated
multiwalled carbon nanotubes (Agr-Ch-MWCNTs) film solid
phase microextraction (SPME) was developed and applied
for the determination of tricyclic antidepressant
drugs (TCAs) in
aqueous samples using high performance liquid chromatography-ultraviolet
detection (HPLC-UV). Integration of highly interconnected pores of MWCNTs in the
agarose-chitosan matrix increases the hydrophobic sites, surface area and
porosity of the materials and thus enhancing the extraction efficiency. The film of blended agarose and chitosan allows good
dispersion of MWCNTs, prevents the leaching of MWCNTs during application and
enhances the film mechanical stability. Optimized
parameters for SPME parameters were obtained which no addition of salt
included, sample pH = 11, 30 minutes extraction time, iso-propanol as
desorption solvent and 0.4% w/v MWCNTs loading in agarose-chitosan matrix. The matrix
match calibration curves demonstrated good linearity in the range of
10-500 ppb with excellent coefficients determination (r2 = 0.9944-0.9961), good limits of detection (LODs) in
the range of 3.13-3.60 ppb, high analyte recoveries (92.04-110.00%) and low
relative standard deviations (RSD < 6.85).
Keywords: blended
agarose/chitosan/multiwalled carbon nanotubes, solid phase microextraction, tricyclic
antidepressant drugs
Abstrak
Filem agarosa-kitosan
bersepadu nanotiub kabon berbilang dinding
(Agr-Ch-MWCNTs) pengestrakan mikro fasa pepejal (SPME) telah dibangunkan
dan diaplikasi untuk penentuan anti-murung trisiklik di dalam sampel akueus
menggunakan kromatografi cecair prestasi tinggi-pengesanan ultralembayung (HPLC-UV). Persepaduan MWCNTs yang mempunyai
liang yang saling berhubung di dalam matriks agarosa/kitosan menambahbaik tapak
hidrofobik, luas permukaan dan keliangan bahan dan meningkatkan kecekapan
pengestrakan. Filem campuran agarosa dan kitosan membenarkan penyerakan MWCNTs
yang baik, menghalang pelunturan MWCNTs semasa aplikasi dan meningkatkan kestabilan
mekanikal filem. Optimum parameter untuk
SPME telah diperolehi termasuk tiada penambahan garam, pH sampel = 11, masa
pengestrakan 30 minit, iso-propanol sebagai pelarut desorpsi dan 0.4% w/v jumlah muatan MWCNTs di dalam matrik
agarosa/kitosan. Lengkungan kalibrasi matrik menunjukkan kelinearan yang bagus
di dalam skala 10-500 ppb dengan penentuan koefisien yang terbaik (r2 = 0.9944-0.9961), had
pengesanan yang bagus (LODs) di dalam skala 3.13-3.60 ppb, perolehan semula
yang tinggi (92.04-110.00%) dan sisihan piawai relatif yang rendah (RSD <
6.85).
Kata kunci: campuran agarosa/kitosan/nanotiub karbon berbilang
dinding, pengestrakan mikro fasa pepejal, anti-murung trisiklik
References
1.
Lindqvist, N.,
Tuhkanen, T. and Kronberg, L. (2005). Occurrence of
acidic pharmaceuticals in raw and treated sewages and in receiving water. Water Research,
39: 2219-2228.
2.
Tambosi, J. L.,
Yamanaka, L.Y. and Moreira, H. J. J. R. F. P. M. (2010), Recent
data on the removal of pharmaceuticals from sewage treatment plants (STP). Química Nova,
33(2): 411-420.
3.
Lin, A.Y-C., Yu, T-H.
and Lateef, S.K. (2009). Removal of pharmaceuticals in
secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167:1163-1169.
4.
Vas, G. and Vékey, K
.J. (2004). Solid-phase microextraction: A powerful
sample preparation tool prior to mass spectrometric analysis. Mass Spectrometry,
39: 233-254.
5.
Pavlović, D. M.,
Babić, S., Horvat, A. J. M. and Kaštelan-Macan, M. (2007). Sample
preparation in analysis of pharmaceuticals. Trends in Analytica Chemistry, 26(11): 1062-1075.
6.
Jiménez, J. J.
(2013). Simultaneous liquid–liquid extraction
and dispersive solid-phase extraction as a sample preparation method to
determine
acidic contaminants in river water by
gas
chromatography/mass spectrometry. Talanta, 116: 678-687.
7.
Wan Ibrahim, W. N., Sanagi, M. M., Hanapi, N. S. M,
Kamaruzaman, S., Yahaya, N. and Wan Ibrahim, W. A. (2018). Solid-phase
microextraction based on an agarose-chitosan-multiwalled carbon nanotube
composite film combined with HPLC–UV for the determination of non-steroidal
anti-inflammatory drugs in aqueous samples. Journal of Separation Science,
41: 2942-2951,
8.
Sutirman, Z. A.,
Sanagi, M. M., Abd Karim, K. J., Abu Naim, A. and Wan Ibrahim, W. A. (2018).
Chitosan-based adsorbent for the removal of metal ions from aqueous solutions. Malaysian
Journal of Analytical Sciences, 22(5):839-850.
9.
Dahane, S., Gil García, M.
D., Martínez Bueno, M.J., Uclés Moreno, A., Martínez Galera, M. and Derdour, A.
(2013). Determination of drugs in river and wastewaters using solid-phase
extraction by packed multi-walled carbon nanotubes and liquid
chromatography-quadrapole-linear ion trap-mass spectrometry. Journal of Chromatography A, 1297:
17-28.
10. Asgharinezhad,
A. A., Mollazadeh, N., Ebrahimzadeh, H., Mirbabaei, F. and Shekari, N. (2014).
Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel
technique for coextraction of acidic and basic drugs from biological fluids and
waste water. Journal of Chromatography A,
1338: 1-8.
11. Hamed Mosavian,
M. T., Es’haghi, Z., Razavi, N., and Banihashem, S. (2012). Pre-concentration
and determination of amitriptyline residues in wastewater by ionic liquid based
immersed droplet microextraction and HPLC. Journal
Pharmaceutical. Analysis. 2(5): 361-365.
12. Luo,
Y-B., Zheng, H-B., Wang, J-X., Gao, Q., Yu, Q-W. and Feng, Y-Q. (2011). An
anionic exchange stir rod sorptive extraction based on monolithic material for
the extraction of non-steroidal anti-inflammatory drugs in environmental
aqueous samples. Talanta. 86:
103-108.
13.
Asgharinezhad, A. A., Karakami, S.,
Ebrahimzadeh, H., Shekari, N. and Jalilian, N. (2015). Polypyrrole/magnetic
nanoparticles composite as an efficient sorbent for dispersive micro-solid
phase extraction of antidepressant drugs from biological fluids. International Journal of Pharmaceuticals.
494: 102-112.
14. Sarafraz-Yazdi,
A., Amiri, A., Rounaghi, G. and Estiagh-Hosseini, H. (2012). Determination of
non-steroidal anti-inflammatory drugs in water samples by solid-phase
microextraction based sol-gel technique using poly(ethylene glycol) grafted
multi-walled carbon nanotubes coated fiber. Analytical
Chimica Acta. 720: 134-141.
15. Loh,
S. H., Sanagi, M. M., Wan Ibrahim, W. A., and Hassan, M. N. (2013).
Multi-walled carbon nanotube-impregnated agarose film microextraction of
polycylic aromatic hydrocarbons in green tea beverage. Talanta. 105: 200-205.
16. Zare,
F., Ghaedi, M. and Daneshfar, A. (2015). Solid phase extraction of
antidepressant drugs amitriptyline and nortiptyline from plasma samples using
core-shell nanoparticles of the type Fe3O4@ZrO2@N-cetylpryridinium,
and their subsequent determination by HPLC with UV Detection. Microchimica Acta. 182: 1893-1902.
17. Mercolini,
L., Mandrioli, R., Finizio, G., Boncompagni, G. and Raggi, M. A. (2010).
Simultaneous HPLC determination of 14 tricyclic antidepressants and metabolites
in human plasma. Journal of Separation
Science 33: 23-30.
18. Alves,
C., Santos-Neto, A. J., Fernandes, C., Rodrigues, J. C. and Lancas, F. M.
(2007). Analysis of tricyclic antidepressant drugs in plasma by means of
solid-phase microextraction-liquid chromatography-mass spectrometry. Journal
of Mass Spectrometry. 42: 1342-1347.
19. Chaves,
A. R., Silva, S. M., Queroz, R. H. C., Lanças, F. M. and Queroz, M. E. C.
(2007). Stir bar sorptive extraction and liquid chromatography with UV
detection for determination of antidepressants in plasma samples. Journal of Chromatography B, 850: 295-302.
20. Lim,
T. H., Hu, L., Yang, C., He, C. and Lee, H. K. (2013). Membrane assisted
micro-solid phase extraction of pharmaceuticals with amino and urea-grafted
silica gel. Journal of Chromatography A,
1316: 8-14.