Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 21 - 32

 

 

 

 

KINETIC STUDIES AND ABSORPTION ISOTHERMAL OF METHYLENE BLUE BY USING N,O-CARBOXYMETHYL CHITOSAN

 

(Kajian Kinetik dan Isoterma Serapan Metilena Biru Menggunakan N,O-Karboksimetil Kitosan)

 

Putri Amirah Solehin Sulizi and Nadhratun Naiim Mobarak*

 

Department of Science Chemistry, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  nadhratunnaiim@ukm.edu.my

 

 

Received: 11 June 2019; Accepted: 11 December 2019

 

 

Abstract

The potential of carboxymethyl chitosan as a low-cost and effective adsorbent for removal of methylene blue (MB) from aqueous solution has been investigated. N,O-carboxymethyl chitosan (N,O-CMCTS) was synthesized by reacting chitosan with monochloroacetic acid. The presence of a carboxymethyl group on carboxymethyl chitosan structure was demonstrated by Fourier Transform Infrared (FTIR) spectroscopy, with the presence of peaks at 1587 cm-1 and 1408 cm-1 assigned to the asymmetrical and symmetrical stretching vibrations of carboxylate anions (-COO-). 1H nuclear magnetic resonance (NMR) results confirm that O-, N- substituted carboxymethyl chitosan was synthesized, as the presence of peaks at 3.987 and 3.275 ppm that represent the substitution of carboxymethylation occurred at both hydroxyl and amino groups of chitosan. The influence of parameters such as initial dye concentration, sorbent dosage and sorption time on the sorption capacity were studied using the batch method. The results showed that maximum sorption capacity N,O-CMCTS was 0.549 mg/g.  The concentration of methylene blue and the quantity of N,O-CMCTS were important in the absorption process, as the kinetic data followed pseudo second order. The sorption of methylene blue on N,O-CMCTS was via chemisorption, as in the isothermal studies, it followed Freundlich model.

 

Keywords:  N,O-carboxymethyl chitosan, methylene blue, isotherms, kinetic

 

Abstrak

Potensi karboksimetil kitosan sebagai penjerap kos rendah dan efektif untuk menyingkirkan metilena biru (MB) dalam larutan akueus telah dikaji. N,O-karboksimetil kitosan (N,O-CMCTS) telah di sintesis melalui tindak balas kitosan dengan asid monokloroasetik. Kehadiran kumpulan karboksimetil pada struktur karboksimetil kitosan telah dibuktikkan dengan keputusan spektroskopi inframerah transformasi Fourier (FTIR) di mana kehadiran puncak pada 1587 cm-1 dan 1408 cm-1 yang menunjukkan getaran regangan asimetri dan simetri bagi anion karboksilat (-COO-). Keputusan 1H resonans magnet nukleus (NMR) mengesahkan penggantian O-, N- karboksimetil kitosan telah di sintesis dengan kehadiran puncak pada 3.987 dan 3.275 ppm yang menunjukkan penggantian pengkarboksimetil terjadi pada kedua-dua kumpulan hidroksil dan amino pada kitosan. Parameter yang mempengaruhi seperti kepekatan awal pewarna, dos penjerap dan masa erapan terhadap kapasiti erapan telah dikaji menggunakan kaedah kelompok. Keputusan menunjukkan kapasiti erapan maksima N,O-CMCTS adalah 0.549 mg/g. Dari kajian ini, kepekatan metilena biru dan kuantiti N,O-CMCTS adalah penting bagi proses serapan di mana data kinetik mengikut tertib pseudo kedua. Selain itu, erapan metilena biru pada N,O-CMCTS secara jerapan kimia serta ujian isoterma mengikut model Freundlich.  

 

Kata kunci:  N,O-karboksimetil kitosan, metilena biru, isoterma, kinetik

 

References

1.       Drumond Chequer, F. M., de Oliveira, G. A. R., Anastacio Ferraz, E. R., Carvalho, J., Boldrin Zanoni, M. V. and de Oliveir, D. P. (2013). Textile dyes: Dyeing process and environmental impact. Eco-Friendly Text Dye Finishing, pp. 151-173.

2.       Zhu, X., Zhang, Z., and Yan, G. (2016). Methylene blue adsorption by novel magnetic chitosan nanoadsorbent. Journal of Water Environment Technology, 14: 96-105.

3.       Mitra, P., Sarkar, K. and Kundu, P. P. (2014). Carboxymethyl chitosan modified montmorillonite for efficient removal of cationic dye from waste water. Defence Science Journal, 64: 198-208.

4.       International, S. O. (2009). ISO 16265 Water Quality-Determination of the Methylene Blue Active Substances (MBAS) Index-Method using Continuous Flow Analysis (CFA).

5.       Manish, K. S. (2012). Recyclable crosslinked O-carboxymethyl chitosan for removal of cationic dye from aqueous solutions. Journal of Waste Water Treatment & Analysis, 03(04).

6.       Chang, M. Y. and Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 278:18-25.

7.       Rafatullah, M., Sulaiman, O., Hashim, R. and Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal Hazardous Material, 177: 70-80.

8.       Synowiecki, J. and Al-khateeb, N. A. (2003). Production, properties and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition, 43(2): 145-171.

9.       Vadivelan, V. and Vasanth Kumar, K. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286: 90-100.

10.    El-Sherbiny, I. M. (2009). Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. European Polymer Journal, 45: 199-210.

11.    Sridhari, T. R. and Dutta, P. K. (2000). Synthesis and characterization of maleilated chitosan for dye house effluent. Indian Journal of Chemical Technology, 7: 198-201.

12.    Kyzas, G. Z. and Bikiaris, D. N. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13(1): 312-337.

13.    Jeon, C. and Höll, W. H. (2003). Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 37: 4770–4780.

14.    Wang, L., Li, Q. and Wang, A. (2010). Adsorption of cationic dye on N,O-carboxymethyl-chitosan from aqueous solutions: Equilibrium, kinetics, and adsorption mechanism. Polymer Bulletin, 65: 961-75.

15.    Hamed, M. M., Ahmed, I. M. and Metwally, S. S. (2014).  Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent. Journal of Industrial Engineering Chemistry, 20 (4): 2370-2377.

16.    Jaidee, A., Rachtanapun, P. and Luangkamin, S. (2012). 1H-NMR analysis of degree of substitution in N,O-carboxymethyl chitosans from various chitosan sources and types. Advanced Materials Research, 506: 158–161.

17.    Chen, X. G. and Park, H. J. (2003). Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymer, 53: 355–359.

18.    de Abreu, F. R. and Campana-Filho, S. P. (2009). Characteristics and properties of carboxymethylchitosan. Carbohydrate Polymer, 75: 214–221.

19.    Shashikala, M., Nagapadma, M., Lolita, P. and Sarath, N. N. (2013). Studies on the removal of methylene blue dye from water using chitosan. International Journal of Development Research, 3(8): 040-044.

20.    Wang, J., Wang, L., Yu, H., Zain-ul-Abdin., Chen, Y., Chen, Q., Zhou, W., Zhang, H. and Chen, X. (2016). Recent progress on synthesis, property and application of modified chitosan: An overview. International Journal of Biological Macromolecules, 88: 333-344.

21.    Rahman, M. A., Amin, S. M. R. and Alam, A. M. S. (2012). Removal of methylene blue from waste water using activated carbon prepared from rice husk. Dhaka University Journal of Science, 60: 185–189.

22.    Dhananasekaran, S., Palanivel, R. and Pappu, S. (2016). Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. Journal of Advanced Research, 7(1): 113-124.

23.    Foo, K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1): 2–10.

24.    Suteu, D. and Malutan, T. (2013). Industrial cellolignin wastes as adsorbent for removal of methylene blue dye from aqueous solutions. BioResources, 8(1): 427–446.

25.    Meroufel, B., Benali, O., Benyahia, M., Benmoussa, Y. and Zenasni, M. A. (2013). Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of Materials Environmental Science, 4: 482-491.

26.    Sahoo, S., Uma, Banerjee, S. and Sharma, Y. C. (2013). Application of natural clay as a potential adsorbent for the removal of a toxic dye from aqueous solutions. Desalination and Water Treatment, 52 (34-36): 6703-6711.

27.    Tseng, R., Tseng, S. and Wu, F. (2006). Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3): 69-78.

28.    Gürses, A., Karaca, S., Do, Ç., Bayrak, R., Açıkyıldız, M. and Yalçın, M. (2004). Determination of adsorptive properties of clay/water system: methylene blue sorption. Journal of Colloid and Interface Science, 269(2): 310-314.

29.    Chakrabarti, S. and Dutta, B. K. (2005). On the adsorption and diffusion of Methylene Blue in glass fibers. Journal of Colloid and Interface Science, 286(2): 807-811.