Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 21 - 32
KINETIC STUDIES AND
ABSORPTION ISOTHERMAL OF METHYLENE BLUE BY USING N,O-CARBOXYMETHYL CHITOSAN
(Kajian
Kinetik dan Isoterma Serapan Metilena Biru Menggunakan N,O-Karboksimetil Kitosan)
Putri
Amirah Solehin Sulizi and Nadhratun Naiim Mobarak*
Department of Science Chemistry, Faculty of
Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: nadhratunnaiim@ukm.edu.my
Received: 11 June 2019;
Accepted: 11 December 2019
Abstract
The
potential of carboxymethyl chitosan
as a low-cost and effective adsorbent for removal of methylene blue (MB) from
aqueous solution has been investigated. N,O-carboxymethyl chitosan (N,O-CMCTS)
was synthesized by reacting chitosan with monochloroacetic acid. The presence
of a carboxymethyl group on carboxymethyl chitosan structure was demonstrated
by Fourier Transform Infrared (FTIR) spectroscopy, with the presence of peaks
at 1587 cm-1 and 1408 cm-1 assigned to the asymmetrical
and symmetrical stretching vibrations of carboxylate anions (-COO-).
1H nuclear magnetic resonance (NMR) results confirm that O-, N-
substituted carboxymethyl chitosan was synthesized, as the presence of peaks at
3.987 and 3.275 ppm that represent the substitution of carboxymethylation
occurred at both hydroxyl and amino groups of chitosan. The influence of
parameters such as initial dye concentration, sorbent dosage and sorption time
on the sorption capacity were studied using the batch method. The results
showed that maximum sorption capacity N,O-CMCTS was 0.549 mg/g. The concentration of methylene blue and the
quantity of N,O-CMCTS were important in the absorption process, as the kinetic
data followed pseudo second order. The sorption of methylene blue on N,O-CMCTS
was via chemisorption, as in the isothermal studies, it followed Freundlich
model.
Keywords: N,O-carboxymethyl
chitosan, methylene blue, isotherms,
kinetic
Abstrak
Potensi karboksimetil kitosan sebagai penjerap kos rendah
dan efektif untuk menyingkirkan metilena biru (MB) dalam larutan akueus telah
dikaji. N,O-karboksimetil kitosan (N,O-CMCTS) telah di sintesis melalui tindak
balas kitosan dengan asid monokloroasetik. Kehadiran kumpulan karboksimetil
pada struktur karboksimetil kitosan telah dibuktikkan dengan keputusan
spektroskopi inframerah transformasi Fourier (FTIR) di mana kehadiran puncak
pada 1587 cm-1 dan 1408 cm-1 yang menunjukkan getaran
regangan asimetri dan simetri bagi anion karboksilat (-COO-).
Keputusan 1H resonans magnet nukleus (NMR) mengesahkan penggantian O-, N-
karboksimetil kitosan telah di sintesis dengan kehadiran puncak pada 3.987
dan 3.275 ppm yang menunjukkan penggantian pengkarboksimetil terjadi pada
kedua-dua kumpulan hidroksil dan amino pada kitosan. Parameter yang
mempengaruhi seperti kepekatan awal pewarna, dos penjerap dan masa erapan
terhadap kapasiti erapan telah dikaji menggunakan kaedah kelompok. Keputusan
menunjukkan kapasiti erapan maksima N,O-CMCTS adalah 0.549 mg/g. Dari kajian
ini, kepekatan metilena biru dan kuantiti N,O-CMCTS adalah penting bagi proses
serapan di mana data kinetik mengikut tertib pseudo kedua. Selain itu, erapan
metilena biru pada N,O-CMCTS secara jerapan kimia serta ujian isoterma mengikut
model Freundlich.
Kata kunci: N,O-karboksimetil kitosan, metilena biru, isoterma, kinetik
References
1.
Drumond Chequer, F. M., de Oliveira, G.
A. R., Anastacio Ferraz, E. R., Carvalho, J., Boldrin Zanoni, M. V. and de
Oliveir, D. P. (2013). Textile dyes: Dyeing process and environmental impact. Eco-Friendly Text Dye Finishing, pp.
151-173.
2.
Zhu, X., Zhang, Z., and Yan, G. (2016).
Methylene blue adsorption by novel magnetic chitosan nanoadsorbent. Journal of Water Environment Technology,
14: 96-105.
3.
Mitra, P., Sarkar, K. and Kundu, P. P.
(2014). Carboxymethyl chitosan modified montmorillonite for efficient removal
of cationic dye from waste water. Defence
Science Journal, 64: 198-208.
4.
International, S. O. (2009). ISO 16265
Water Quality-Determination of the Methylene Blue Active Substances (MBAS)
Index-Method using Continuous Flow Analysis (CFA).
5.
Manish, K. S. (2012). Recyclable
crosslinked O-carboxymethyl chitosan for removal of cationic dye from aqueous
solutions. Journal of Waste Water
Treatment & Analysis, 03(04).
6.
Chang, M. Y. and Juang, R. S. (2004).
Adsorption of tannic acid, humic acid, and dyes from water using the composite
of chitosan and activated clay. Journal
of Colloid and Interface Science, 278:18-25.
7.
Rafatullah, M., Sulaiman, O., Hashim, R.
and Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A
review. Journal Hazardous Material,
177: 70-80.
8.
Synowiecki, J. and Al-khateeb, N. A.
(2003). Production, properties and some new applications of chitin and its
derivatives. Critical Reviews in Food
Science and Nutrition, 43(2): 145-171.
9.
Vadivelan, V. and Vasanth Kumar, K.
(2005). Equilibrium, kinetics, mechanism, and process design for the sorption of
methylene blue onto rice husk. Journal of
Colloid and Interface Science, 286: 90-100.
10.
El-Sherbiny, I. M. (2009). Synthesis,
characterization and metal uptake capacity of a new carboxymethyl chitosan
derivative. European Polymer Journal,
45: 199-210.
11.
Sridhari, T. R. and Dutta, P. K. (2000).
Synthesis and characterization of maleilated chitosan for dye house effluent. Indian Journal of Chemical Technology,
7: 198-201.
12.
Kyzas, G. Z. and Bikiaris, D. N. (2015).
Recent modifications of chitosan for adsorption applications: A critical and
systematic review. Marine Drugs,
13(1): 312-337.
13.
Jeon, C. and Höll, W. H. (2003).
Chemical modification of chitosan and equilibrium study for mercury ion
removal. Water Research, 37:
4770–4780.
14.
Wang, L., Li, Q. and Wang, A. (2010).
Adsorption of cationic dye on N,O-carboxymethyl-chitosan from aqueous
solutions: Equilibrium, kinetics, and adsorption mechanism. Polymer Bulletin, 65: 961-75.
15.
Hamed, M. M., Ahmed, I. M. and Metwally,
S. S. (2014). Adsorptive removal of
methylene blue as organic pollutant by marble dust as eco-friendly sorbent. Journal of Industrial Engineering Chemistry,
20 (4): 2370-2377.
16.
Jaidee, A., Rachtanapun, P. and
Luangkamin, S. (2012). 1H-NMR analysis of degree of substitution in
N,O-carboxymethyl chitosans from various chitosan sources and types. Advanced Materials Research, 506:
158–161.
17.
Chen, X. G. and Park, H. J. (2003).
Chemical characteristics of O-carboxymethyl chitosans related to the
preparation conditions. Carbohydrate
Polymer, 53: 355–359.
18.
de Abreu, F. R. and Campana-Filho, S. P.
(2009). Characteristics and properties of carboxymethylchitosan. Carbohydrate Polymer, 75: 214–221.
19.
Shashikala, M., Nagapadma, M., Lolita,
P. and Sarath, N. N. (2013). Studies on the removal of methylene blue dye from
water using chitosan. International
Journal of Development Research, 3(8): 040-044.
20.
Wang, J., Wang, L., Yu, H.,
Zain-ul-Abdin., Chen, Y., Chen, Q., Zhou, W., Zhang, H. and Chen, X. (2016).
Recent progress on synthesis, property and application of modified chitosan: An
overview. International Journal of
Biological Macromolecules, 88: 333-344.
21.
Rahman, M. A., Amin, S. M. R. and Alam,
A. M. S. (2012). Removal of methylene blue from waste water using activated
carbon prepared from rice husk. Dhaka
University Journal of Science, 60: 185–189.
22.
Dhananasekaran, S., Palanivel, R. and
Pappu, S. (2016). Adsorption of methylene blue, bromophenol blue, and coomassie
brilliant blue by α-chitin nanoparticles. Journal of Advanced Research, 7(1): 113-124.
23.
Foo, K. Y. and Hameed, B. H. (2010).
Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1): 2–10.
24.
Suteu, D. and Malutan, T. (2013).
Industrial cellolignin wastes as adsorbent for removal of methylene blue dye
from aqueous solutions. BioResources,
8(1): 427–446.
25.
Meroufel, B., Benali, O., Benyahia, M.,
Benmoussa, Y. and Zenasni, M. A. (2013). Adsorptive removal of anionic dye from
aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and
thermodynamic studies. Journal of
Materials Environmental Science, 4: 482-491.
26.
Sahoo, S., Uma, Banerjee, S. and Sharma,
Y. C. (2013). Application of natural clay as a potential adsorbent for the
removal of a toxic dye from aqueous solutions. Desalination and Water Treatment, 52 (34-36): 6703-6711.
27.
Tseng, R., Tseng, S. and Wu, F. (2006).
Preparation of high surface area carbons from Corncob with KOH etching plus CO2
gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 279(1-3): 69-78.
28.
Gürses, A., Karaca, S., Do, Ç., Bayrak,
R., Açıkyıldız, M. and Yalçın, M. (2004). Determination of
adsorptive properties of clay/water system: methylene blue sorption. Journal of Colloid and Interface Science,
269(2): 310-314.
29.
Chakrabarti, S. and Dutta, B. K. (2005).
On the adsorption and diffusion of Methylene Blue in glass fibers. Journal of Colloid and Interface Science,
286(2): 807-811.