Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 11 - 20

 

 

 

 

Synthesis and SOLID-STATE structurAL ELUCIDATION of rhenium(I) complex with 1-cinnamoyl-3-(pyridIN-2-YL)pyrazole

 

(Sintesis dan Penentuan Struktur Pepejal Kompleks Renium(I) dengan 1-Sinamoil-3-(Piridin-2-il)Pirazola)

 

Wun Fui Mark-Lee1, Yan Yi Chong2, Azizul Hakim Lahuri1, Mohammad B. Kassim2*

 

1Department of Basic Science and Engineering, Faculty of Agriculture and Food Sciences,

Universiti Putra Malaysia Bintulu, 97008 Sarawak, Malaysia

2Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  mb_kassim@ukm.edu.my

 

 

Received: 20 November 2019; Accepted: 15 January 2020

 

 

Abstract

Re(I) complexes have been described as a promising tool for DNA probes. Rhenium(I) tricarbonyl complexes have favourable structural features suitable for DNA intercalation such as the new rhenium(I) tricarbonyl complex with polypyridyl ancillary ligand, namely, fac-[Re(CnPyPz)(CO)3Cl] (CnPyPz = 1-cinnamoyl-3-(pyridin-2-yl)pyrazole). The complex was synthesised from the reaction of 1-cinnamoyl-3-(pyridin-2-yl)pyrazole and rhenium(I) pentacarbonyl chloride in toluene at refluxing temperature and characterised by infrared (IR), ultraviolet-visible (UV-Vis), 13C and 1H NMR spectroscopies and X-ray crystallography. The IR spectrum featured the three n(CºO) signal for the rhenium moiety at 1862-2019 cm-1 and other signals for the ligand namely n(C=O), n(C=N) and n(C=C) at 1724, 1609 and 1497 cm-1, respectively. The 13C NMR spectra showed three CºO (190.0 – 198.1 ppm) signals whereas the 1H spectrum for Re(CO)3(CnPyPz)Cl exhibited two pairs of doublets (7.81 and 8.18 ppm) for the vinylic H of the cinnamoyl group. The complex exhibited a broad band corresponding to the metal-to-ligand charge transfer (MLCT) in the region of 360-390 nm. The Re(CO)3(CnPyPz)Cl complex underwent a ligand exchange during the crystallisation process, involving one of the tricarbonyl groups with a chlorine atom to form the Re(CO)2(CnPyPz)Cl2 complex. The corresponding, Re(CO)2(CnPyPz)Cl2 crystal adopts a triclinic crystal system with a P-1 space group. The implementation of flexible CnPyPz ligand contributes to a dynamic supramolecular arrangement that facilitates both a planar π-π stacking arrangement accompanied with an appreciable globularity character via C−H···π and C≡O···π interconnections.

 

Keywords:  rhenium, carbonyl, π stacking, Hirshfeld, DNA probes

 

Abstrak

Kompleks Re(I) telah dikenali sebagai bahan yang berpotensi untuk prob DNA. Kompleks trikarbonil Re(I) mempunyai ciri struktur yang sesuai untuk interkalasi DNA seperti mana kompleks renium(I) trikarbonil dengan ligan ansilari polipiridina, fac-[Re(CnPyPz)(CO)3Cl] (CnPyPz = 1-sinamoil-3-(piridin-2-il)pirazola). Kompleks ini telah disintesis daripada tindak balas 1-sinamoil-3-(piridin-2-il)pirazola dengan pentakarbonilklororenium(I) dalam toluena pada suhu refluks dan telah dicirikan dengan menggunakan spektroskopi inframerah (IR), ultralembahyung-cahaya nampak (UV-Vis), resonans magnet nukleus (NMR) 13C dan 1H dan kristalografi sinar-X. Spektrum IR menunjukkan tiga jalur n(CºO) untuk moieti logam renium pada 1862-2019 cm-1, dan isyarat ligan seperti n(C=O), n(C=N) dan n(C=C) masing-masing pada 1724, 1609 dan 1497 cm-1. Spektrum NMR 13C menunjukkan tiga isyarat CºO pada julat 190.0 – 198.1 ppm manakala spektrum 1H kompleks Re(CO)3(CnPyPz)Cl menunjukkan proton vinil (CH=CH) kumpulan sinamoil sebagai dua pasangan dublet pada 7.81 dan 8.18 ppm. Kompleks Re(I) ini mempamerkan jalur yang lebar bagi pertukaran cas logam kepada ligan (MLCT) pada julat 360-390 nm. Kompleks Re(CO)3(CnPyPz)Cl mengalami pertukaran ligan yang melibatkan pengoksidaan pusat logam Re(I) kepada Re(II) semasa proses penghabluran yang melibatkan salah satu daripada kumpulan trikarbonil dengan satu atom klorin untuk membentuk kompleks Re(CO)2(CnPyPz)Cl2. Kompleks ini menghablur dalam sistem kristal triklinik dengan kumpulan ruang P-1. Penggunaan ligan CnPyPz yang fleksibel menyumbang kepada susunan supramolekul yang membawa kepada susunan π-π satah berserta dengan sifat globular yang ketara melalui ikatan C−H···π dan C≡O···π. 

 

Kata kunci:  renium, karbonil, susunan π, Hirshfeld, prob DNA

 

References

1.       Balakrishnan, G., Rajendran, T., Senthil Murugan, K., Sathish Kumar, M., Sivasubramanian, V.K., Ganesan, M., Mahesh, A., Thirunalasundari, T. and Rajagopal, S. (2015). Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus DNA: Cytotoxic and cell imaging studies. Inorganica Chimica Acta, 434: 51-59.

2.       Lo, K.K.-W. and Tsang, K.H.-K. (2004). Bifunctional luminescent rhenium(I) complexes containing an extended planar diimine ligand and a biotin moiety. Organometallics, 23(12): 3062-3070.

3.       Medley, J., Payne, G., Banerjee, H.N., Giri, D., Winstead, A., Wachira, J.M., Krause, J.A., Shaw, R., Pramanik, S. K. and Mandal, S. K. (2015). DNA-binding and cytotoxic efficacy studies of organorhenium pentylcarbonate compounds. Molecular and Cellular Biochemistry, 398(1–2): 21-30.

4.       Uma Maheswari, P. and Palaniandavar, M. (2004). DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines - Effect of hydrogen-bonding on DNA-binding affinity. Journal of Inorganic Biochemistry, 98(2): 219-230.

5.       Yam, V.W.-W., Lo, K.K.-W., Cheung, K.-K. and Kong, R.Y.-C. (1995). Synthesis, photophysical properties and DNA binding studies of novel luminescent rhenium(I) complexes. X-ray crystal structure of [Re(ddpn)(CO)3(py)](OTf). Journal of the Chemical Society, Chemical Communications, (11): 1191-1193.

6.       Amoroso, A. J., Coogan, M. P., Dunne, J. E., Fernández-Moreira, V., Hess, J. B., Hayes, A. J., Lloyd, D., Millet, C., Pope, S. J. A. and Williams, C. (2007). Rhenium fac tricarbonyl bisimine complexes: Biologically useful fluorochromes for cell imaging applications. Chemical Communications, (29): 3066-3068.

7.       Ranasinghe, K., Handunnetti, S., Perera, I. C. and Perera, T. (2016). Synthesis and characterization of novel rhenium(I) complexes towards potential biological imaging applications. Chemistry Central Journal, 10(1): 1-10.

8.       Ma, D., Che, C., Siu, F., Yang, M. and Wong, K. (2007). DNA binding and cytotoxicity of ruthenium(II) and rhenium(I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine. Inorganic Chemistry, 46(3): 740-749.

9.       Strekowski, L. and Wilson, B. (2007). Noncovalent interactions with DNA: An overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 623 (1–2): 3-13.

10.    Chan, C. Y., Noor, A., McLean, C. A., Donnelly, P. S. and Barnard, P. J. (2017). Rhenium(I) complexes of N-heterocyclic carbene ligands that bind to amyloid plaques of Alzheimer’s disease. Chemical Communications, 53(15): 2311-2314.

11.    Egli, M., Tereshko, V., Mushudov, G. N., Sanishvili, R., Liu, X. and Lewis, F. D. (2003). Face-to-face and edge-to-face π-π interactions in a synthetic DNA hairpin with a stilbene diether linker. Journal of the American Chemical Society,125 (36): 10842-10849.

12.    Selamat, N., Yook Heng, L., Hassan, N. I. and Abd Karim, N. H. (2016). Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridyl ligand and its platinum complex for the interaction with CT-DNA. Malaysian Journal of Analytical Science, 20(1): 111-120.

13.    Shamsuddin, R., Sahudin, M. A., Hassan, N. H. and Abdul Karim, N. H. (2017). Interaction of N,N’-bis[4-[1-(2-hydroxyethoxy)]salicylidene]-phenyldiamine-nickel(II) and copper(II) complexes with g-quadrupex DNA. Malaysian Journal of Analytical Sciences, 21(3): 544-551.

14.    Ismail, M. B., Booysen, I. N., Hosten, E. and Akerman, M. P. (2017). Synthesis, characterization and DNA interaction studies of tricarbonyl rhenium(I) compounds containing terpyridine Schiff base chelates. Journal of Organometallic Chemistry, 833(1): 1-9.

15.    Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. and Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.

16.    Lin, Y. and Lang, S. A. (1977). Novel two step synthesis of pyrazoles and isoxazoles from aryl methyl ketones. Journal of Heterocyclic Chemistry,14(2): 345-347.

17.    Kianfar, E., Kaiser, M. and Knör, G. (2015). Synthesis, characterization and photoreactivity of rhenium and molybdenum carbonyl complexes with iminopyridine ligands. Journal of Organometallic Chemistry, 799–800: 13-18.

18.    Mark-Lee, W. F., Chong, Y. Y., Law, K. P., Ahmad, I. B. and Kassim, M. B. (2018). Synthesis, structure and Density Functional Theory (DFT) study of a rhenium(I) pyridylpyrazol complex as a potential photocatalyst for CO2 reduction. Sains Malaysiana, 47(7): 1491-1499.

19.    Dattelbaum, D. M., Martin, R. L., Schoonover, J. R. and Meyer, T. J. (2004). Molecular and electronic structure in the metal-to-ligand charge transfer excited states of fac-[Re(4,4’-X2bpy)(CO)3(4-Etpy)] (X = CH3, H, Co2Et). Application of density functional theory and time-resolved infrared spectroscopy. The Journal of Physical Chemistry A,108(16): 3518-3526.

20.    Brisdon, B. J., Edwards, D. A. and White, J. W. (1978). Anionic tricarbonyl derivatives of molybdenum and tungsten and their reactions with allyl halides. Journal of Organometallic Chemistry, 156: 427-437.

21.    Piletska, K. O., Domasevitch, K. V., Gusev, A. N., Shul’Gin, V. F. and Shtemenko, A. V.  (2015). fac-Tricarbonyl rhenium(I) complexes of triazole-based ligands: Synthesis, X-ray structure and luminescent properties. Polyhedron, 102 (I): 699-704.

22.    Subasinghe, A., Perera, I. C., Pakhomova, S. and Perera, T. (2016). Synthesis, characterization, and biological studies of a piperidinyl appended dipicolylamine ligand and its rhenium tricarbonyl complex as potential therapeutic agents for human breast cancer. Bioinorganic Chemistry and Applications, 2016: 1–10.

23.    Wu, P.-C., Yu, J.-K., Song, Y.-H., Chi, Y., Chou, P.-T., Peng, S.-M. and Lee, G.-H. (2003). Synthesis and characterization of metal complexes possessing the 5-(2-pyridyl) pyrazolate ligands: The observation of remarkable osmium-induced blue phosphorescence in solution at room temperature. Organometallics, 22 (24): 4938-4946.

24.    Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. and Yano, S. (2008). Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Transactions, 2008: 3292-3300.

25.    Seridi, A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., Machura, B. and Benoist, E. (2011). Rhenium(I) and technetium(I) complexes of a novel pyridyltriazole-based ligand containing an arylpiperazine pharmacophore: Synthesis, crystal structures, computational studies and radiochemistry. Inorganic Chemistry Communications, 14(1): 238-242.

26.    Wei, Q.-H., Xiao, F.-N., Han, L.-J., Zeng, S.-L., Duan, Y.-N. and Chen, G.-N. (2011). Synthesis, structure, photophysical and electrochemiluminescence properties of Re(I) tricarbonyl complexes incorporating pyrazolyl-pyridyl-based ligands. Dalton Transactions, 40(18): 5078-5085.

27.    Zubaidi, Z. N., Metherell, A. J., Baggaley, E. and Ward, M. D. (2017). Ir(III) and Ir(III)/Re(I) complexes of a new bis(pyrazolyl-pyridine) bridging ligand containing a naphthalene-2,7-diyl spacer: Structural and photophysical properties. Polyhedron, 133: 68-74.

28.    Etter, M. C., MacDonald, J. C. and Bernstein, J. (1990). Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallographica Section B, 46(2): 256-262.

29.    Mark-Lee, W. F., Chong, Y. Y. and Kassim, M. B. (2018). Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents. Acta Crystallographica Section C, 74: 997-1006.