Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 11 - 20
Synthesis and SOLID-STATE
structurAL ELUCIDATION of rhenium(I)
complex with 1-cinnamoyl-3-(pyridIN-2-YL)pyrazole
(Sintesis dan Penentuan Struktur Pepejal Kompleks
Renium(I) dengan 1-Sinamoil-3-(Piridin-2-il)Pirazola)
Wun
Fui Mark-Lee1, Yan Yi Chong2, Azizul Hakim Lahuri1,
Mohammad
B. Kassim2*
1Department of Basic Science and Engineering, Faculty of Agriculture and
Food Sciences,
Universiti Putra Malaysia
Bintulu, 97008 Sarawak, Malaysia
2Centre
for Advanced Materials and Renewable Resources, Faculty of Science and
Technology,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: mb_kassim@ukm.edu.my
Received: 20 November 2019;
Accepted: 15 January 2020
Abstract
Re(I) complexes have been
described as a promising tool for DNA probes. Rhenium(I) tricarbonyl complexes
have favourable structural features suitable for DNA intercalation such as the
new rhenium(I) tricarbonyl complex with
polypyridyl ancillary ligand, namely, fac-[Re(CnPyPz)(CO)3Cl] (CnPyPz =
1-cinnamoyl-3-(pyridin-2-yl)pyrazole). The complex was synthesised from the
reaction of 1-cinnamoyl-3-(pyridin-2-yl)pyrazole and rhenium(I) pentacarbonyl chloride in toluene at
refluxing temperature and characterised by
infrared (IR), ultraviolet-visible (UV-Vis), 13C and 1H
NMR spectroscopies and X-ray crystallography. The IR spectrum featured the
three n(CºO) signal for the rhenium moiety at 1862-2019 cm-1 and other signals for
the ligand namely n(C=O), n(C=N) and n(C=C) at 1724, 1609 and 1497 cm-1, respectively. The 13C
NMR spectra showed three CºO (190.0 – 198.1 ppm) signals whereas the 1H
spectrum for Re(CO)3(CnPyPz)Cl exhibited two pairs of doublets (7.81
and 8.18 ppm) for the vinylic H of the cinnamoyl group. The complex exhibited a
broad band corresponding to the metal-to-ligand charge transfer (MLCT) in the
region of 360-390 nm. The Re(CO)3(CnPyPz)Cl complex underwent a
ligand exchange during the crystallisation process, involving one of the
tricarbonyl groups with a chlorine atom to form the Re(CO)2(CnPyPz)Cl2
complex. The corresponding, Re(CO)2(CnPyPz)Cl2 crystal
adopts a triclinic crystal system with a P-1 space group. The implementation of flexible CnPyPz
ligand contributes to a dynamic supramolecular arrangement that facilitates
both a planar π-π stacking
arrangement accompanied with an appreciable globularity character via
C−H···π and C≡O···π interconnections.
Keywords: rhenium, carbonyl, π stacking, Hirshfeld, DNA probes
Abstrak
Kompleks Re(I) telah
dikenali sebagai bahan yang berpotensi untuk prob DNA. Kompleks trikarbonil
Re(I) mempunyai ciri struktur yang sesuai untuk interkalasi DNA seperti mana
kompleks renium(I) trikarbonil dengan ligan ansilari polipiridina, fac-[Re(CnPyPz)(CO)3Cl]
(CnPyPz = 1-sinamoil-3-(piridin-2-il)pirazola). Kompleks ini telah disintesis
daripada tindak balas 1-sinamoil-3-(piridin-2-il)pirazola dengan
pentakarbonilklororenium(I) dalam toluena pada suhu refluks dan telah dicirikan
dengan menggunakan spektroskopi inframerah (IR), ultralembahyung-cahaya nampak
(UV-Vis), resonans magnet nukleus (NMR) 13C dan 1H dan
kristalografi sinar-X. Spektrum IR menunjukkan tiga jalur n(CºO) untuk moieti logam renium pada 1862-2019 cm-1, dan isyarat ligan seperti n(C=O), n(C=N) dan n(C=C) masing-masing pada 1724, 1609 dan 1497 cm-1. Spektrum NMR 13C menunjukkan tiga isyarat CºO pada julat 190.0 – 198.1 ppm manakala spektrum 1H
kompleks Re(CO)3(CnPyPz)Cl menunjukkan proton vinil (CH=CH) kumpulan
sinamoil sebagai dua pasangan dublet pada 7.81 dan 8.18 ppm. Kompleks Re(I) ini
mempamerkan jalur yang lebar bagi pertukaran cas logam kepada ligan (MLCT) pada
julat 360-390 nm. Kompleks Re(CO)3(CnPyPz)Cl mengalami pertukaran
ligan yang melibatkan pengoksidaan pusat logam Re(I) kepada Re(II) semasa
proses penghabluran yang melibatkan salah satu daripada kumpulan trikarbonil
dengan satu atom klorin untuk membentuk kompleks Re(CO)2(CnPyPz)Cl2.
Kompleks ini menghablur dalam sistem kristal triklinik dengan kumpulan ruang P-1. Penggunaan ligan CnPyPz yang
fleksibel menyumbang kepada susunan supramolekul yang membawa kepada susunan π-π satah berserta dengan
sifat globular yang ketara melalui ikatan C−H···π dan
C≡O···π.
Kata kunci: renium, karbonil, susunan π, Hirshfeld, prob DNA
References
1. Balakrishnan,
G., Rajendran, T., Senthil Murugan, K., Sathish Kumar, M., Sivasubramanian,
V.K., Ganesan, M., Mahesh, A., Thirunalasundari, T. and Rajagopal, S. (2015).
Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus
DNA: Cytotoxic and cell imaging studies. Inorganica
Chimica Acta, 434: 51-59.
2. Lo,
K.K.-W. and Tsang, K.H.-K. (2004). Bifunctional luminescent rhenium(I)
complexes containing an extended planar diimine ligand and a biotin moiety. Organometallics, 23(12): 3062-3070.
3. Medley,
J., Payne, G., Banerjee, H.N., Giri, D., Winstead, A., Wachira, J.M., Krause,
J.A., Shaw, R., Pramanik, S. K. and Mandal, S. K. (2015). DNA-binding and
cytotoxic efficacy studies of organorhenium pentylcarbonate compounds. Molecular and Cellular Biochemistry, 398(1–2):
21-30.
4. Uma
Maheswari, P. and Palaniandavar, M. (2004). DNA binding and cleavage properties
of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines
- Effect of hydrogen-bonding on DNA-binding affinity. Journal of Inorganic Biochemistry, 98(2): 219-230.
5. Yam,
V.W.-W., Lo, K.K.-W., Cheung, K.-K. and Kong, R.Y.-C. (1995). Synthesis,
photophysical properties and DNA binding studies of novel luminescent
rhenium(I) complexes. X-ray crystal structure of [Re(ddpn)(CO)3(py)](OTf).
Journal of the Chemical Society, Chemical
Communications, (11): 1191-1193.
6. Amoroso,
A. J., Coogan, M. P., Dunne, J. E., Fernández-Moreira, V., Hess, J. B., Hayes,
A. J., Lloyd, D., Millet, C., Pope, S. J. A. and Williams, C. (2007). Rhenium fac tricarbonyl bisimine complexes: Biologically
useful fluorochromes for cell imaging applications. Chemical Communications, (29): 3066-3068.
7. Ranasinghe,
K., Handunnetti, S., Perera, I. C. and Perera, T. (2016). Synthesis and
characterization of novel rhenium(I) complexes towards potential biological
imaging applications. Chemistry Central
Journal, 10(1): 1-10.
8. Ma, D.,
Che, C., Siu, F., Yang, M. and Wong, K. (2007). DNA binding and cytotoxicity of
ruthenium(II) and rhenium(I) complexes of
2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine. Inorganic Chemistry, 46(3): 740-749.
9. Strekowski,
L. and Wilson, B. (2007). Noncovalent interactions with DNA: An overview. Mutation Research/Fundamental and Molecular
Mechanisms of Mutagenesis, 623 (1–2): 3-13.
10. Chan, C.
Y., Noor, A., McLean, C. A., Donnelly, P. S. and Barnard, P. J. (2017).
Rhenium(I) complexes of N-heterocyclic carbene ligands that bind to amyloid
plaques of Alzheimer’s disease. Chemical
Communications, 53(15): 2311-2314.
11. Egli,
M., Tereshko, V., Mushudov, G. N., Sanishvili, R., Liu, X. and Lewis, F. D.
(2003). Face-to-face and edge-to-face π-π
interactions in a synthetic DNA hairpin with a stilbene diether linker. Journal of the American Chemical Society,125 (36): 10842-10849.
12. Selamat,
N., Yook Heng, L., Hassan, N. I. and Abd Karim, N. H. (2016). Synthesis and
characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridyl ligand and its
platinum complex for the interaction with CT-DNA. Malaysian Journal of Analytical Science, 20(1): 111-120.
13. Shamsuddin,
R., Sahudin, M. A., Hassan, N. H. and Abdul Karim, N. H. (2017). Interaction of
N,N’-bis[4-[1-(2-hydroxyethoxy)]salicylidene]-phenyldiamine-nickel(II) and
copper(II) complexes with g-quadrupex DNA. Malaysian
Journal of Analytical Sciences, 21(3): 544-551.
14. Ismail,
M. B., Booysen, I. N., Hosten, E. and Akerman, M. P. (2017). Synthesis,
characterization and DNA interaction studies of tricarbonyl rhenium(I)
compounds containing terpyridine Schiff base chelates. Journal of Organometallic Chemistry, 833(1): 1-9.
15. Turner,
M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R.,
Jayatilaka, D. and Spackman, M. A. (2017). CrystalExplorer17. University of
Western Australia.
16. Lin, Y.
and Lang, S. A. (1977). Novel two step synthesis of pyrazoles and isoxazoles
from aryl methyl ketones. Journal of Heterocyclic Chemistry,14(2): 345-347.
17. Kianfar,
E., Kaiser, M. and Knör, G. (2015). Synthesis, characterization and
photoreactivity of rhenium and molybdenum carbonyl complexes with iminopyridine
ligands. Journal of Organometallic
Chemistry, 799–800: 13-18.
18. Mark-Lee,
W. F., Chong, Y. Y., Law, K. P., Ahmad, I. B. and Kassim, M. B. (2018).
Synthesis, structure and Density Functional Theory (DFT) study of a rhenium(I)
pyridylpyrazol complex as a potential photocatalyst for CO2
reduction. Sains Malaysiana, 47(7):
1491-1499.
19. Dattelbaum,
D. M., Martin, R. L., Schoonover, J. R. and Meyer, T. J. (2004). Molecular and
electronic structure in the metal-to-ligand charge transfer excited states of fac-[Re(4,4’-X2bpy)(CO)3(4-Etpy)]
(X = CH3, H, Co2Et). Application of density functional
theory and time-resolved infrared spectroscopy. The Journal of Physical Chemistry A,108(16): 3518-3526.
20. Brisdon,
B. J., Edwards, D. A. and White, J. W. (1978). Anionic tricarbonyl derivatives
of molybdenum and tungsten and their reactions with allyl halides. Journal of Organometallic Chemistry, 156:
427-437.
21. Piletska,
K. O., Domasevitch, K. V., Gusev, A. N., Shul’Gin, V. F. and Shtemenko, A.
V. (2015). fac-Tricarbonyl rhenium(I) complexes of triazole-based ligands:
Synthesis, X-ray structure and luminescent properties. Polyhedron, 102 (I): 699-704.
22. Subasinghe,
A., Perera, I. C., Pakhomova, S. and Perera, T. (2016). Synthesis,
characterization, and biological studies of a piperidinyl appended
dipicolylamine ligand and its rhenium tricarbonyl complex as potential
therapeutic agents for human breast cancer. Bioinorganic
Chemistry and Applications, 2016: 1–10.
23. Wu,
P.-C., Yu, J.-K., Song, Y.-H., Chi, Y., Chou, P.-T., Peng, S.-M. and Lee, G.-H.
(2003). Synthesis and characterization of metal complexes possessing the
5-(2-pyridyl) pyrazolate ligands: The observation of remarkable osmium-induced
blue phosphorescence in solution at room temperature. Organometallics, 22 (24): 4938-4946.
24. Obata,
M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R.,
Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki,
T. and Yano, S. (2008). Syntheses, structural characterization and
photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Transactions, 2008: 3292-3300.
25. Seridi,
A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., Machura, B. and
Benoist, E. (2011). Rhenium(I) and technetium(I) complexes of a novel
pyridyltriazole-based ligand containing an arylpiperazine pharmacophore:
Synthesis, crystal structures, computational studies and radiochemistry. Inorganic Chemistry Communications,
14(1): 238-242.
26. Wei,
Q.-H., Xiao, F.-N., Han, L.-J., Zeng, S.-L., Duan, Y.-N. and Chen, G.-N.
(2011). Synthesis, structure, photophysical and electrochemiluminescence
properties of Re(I) tricarbonyl complexes incorporating pyrazolyl-pyridyl-based
ligands. Dalton Transactions, 40(18):
5078-5085.
27. Zubaidi,
Z. N., Metherell, A. J., Baggaley, E. and Ward, M. D. (2017). Ir(III) and
Ir(III)/Re(I) complexes of a new bis(pyrazolyl-pyridine) bridging ligand
containing a naphthalene-2,7-diyl spacer: Structural and photophysical
properties. Polyhedron, 133: 68-74.
28. Etter,
M. C., MacDonald, J. C. and Bernstein, J. (1990). Graph-set analysis of
hydrogen-bond patterns in organic crystals. Acta Crystallographica Section B, 46(2):
256-262.
29. Mark-Lee,
W. F., Chong, Y. Y. and Kassim, M. B. (2018). Supramolecular structures of
rhenium(I) complexes mediated by ligand planarity via the interplay of
substituents. Acta Crystallographica
Section C, 74: 997-1006.