Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 134 - 145
INSIGHTS ON THE CHEMICAL CONSTITUENTS AND
HYDROTHERMAL CARBONIZATION OF Crescentia
cujete L.
(Pencirian Jujukan Kimia dan Pengkarbonan Hidrotermal bagi Crescentia cujete L.)
Judith Clarisse Jose1, Glenn Oyong2,
Michael Dominic Ajero3, Irving Chiong3, Esperanza Cabrera1,2, Maria Carmen S. Tan3*,
1Biology Department
2Molecular Science Unit
Laboratory Center for Natural Sciences and Environmental
Research
3Chemistry Department
De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
*Corresponding author: maria.carmen.tan@dlsu.edu.ph
Received: 12 December 2019;
Accepted: 21 January 2020
Abstract
Crescentia cujete L. is
an evergreen tree that presents several medicinal and industrial applications. This
study primarily aimed to present preliminary characterization of the fruit
extracts and fruit pulp of Crescentia cujete L. using several analytical
techniques. Characterization of the crude MeOH extract and pure compound, trans-cinnamic
acid, isolated from the fruit extract were performed using gas
chromatography-electron ionization-mass spectrometry (GC-EI-MS). Lyophilized
pulp was characterized by energy dispersive X-ray spectroscopy (EDX). Hydrochar
samples resulting from hydrothermal carbonization (HTC) of fruit pulp were
characterized using Fourier transform infrared spectroscopy (FTIR), scanning
electron microscopy (SEM) and thermogravimetric analysis (TGA). Eight
constituents were eluted from the crude MeOH extract which were mainly composed
of furan (5-Hydroxymethylfurfural, 53.99%), a pyranone derivative
(2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one,
8.68%) and a carboxylic acid (3-phenyl-2-propenoic acid, 7.94% or
compound 5). Other notable compounds
of the extract include furaneol (0.78% and 1.56%), phenol,
2,4-bis(1,1-dimethylethyl)- (3.73%), benzenepropanoic acid,
3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester (1.15%) and n-hexadecanoic
acid (0.59%). GC-EI-MS confirmed the purity of the isolated compound trans-cinnamic
acid (100%). EDX analysis showed high levels of K2O (79.56%), P2O5
(9.925%), and SO3 (9.131%) from the lyophilized pulp.
Aliphatic compounds such as alkanes and alkenes were mostly present in both
hydrochars as revealed by FTIR analyses. SEM and TGA analyses showed degradation
of the lignin components of both hydrochars after the hydrothermal
carbonization process. These results present the chemical characterization of
the C. cujete fruit and the HTC of the pulp biomass which exhibited
promising properties for applications as solid fuel or as an adsorbent.
Keywords: Crescentia
cujete
L., hydrothermal carbonization, hydrochar
Abstrak
Crescentia cujete L. ialah tumbuhan yang digunakan dalam perubatan dan
aplikasi industri. Kajian ini dijalankan dengan tujuan melakukan saringan
pencirian ekstrak buah dan pulpa Crescentia cujete L. menggunakan
beberapa teknik analisis. Pencirian esktrak mentah MeOH dan sebatian tulen, trans-asid sinamik, dipencil dari
ekstrak buah dilakukan menggunakan kromatografi gas-pengionan elektron-spektrometri
jisim (GC-EI-MS). Pulpa liofili dicirikan melalui spektroskopi sinar-X tenaga
serakan (EDX). Sampel hidrochar yang terhasil dari pengkarbonan hidrotermal
(HTC) pulpa buah telah dicirikan menggunakan spektroskopi infremerah
transformasi Fourier (FTIR), mikroskopi imbasan elektron (SEM) dan analisis
termogravimetrik (TGA). Lapan jujukan kimia yang terelusi dari ekstrak mentah
MeOH terdiri daripada furan (5-hidroksimetilfurfural, 55.99%), terbitan piranon
(2,3-dihidro-3,4-dihidroksi-6-metil-4H-piran-4-on, 8.68%) dan asid karbosilik
(3-fenil-2-asid propenoik, 7.94% atau sebatian 5). Sebatian lain yang dikenal
pasti dari ekstrak termasuklah furaneol (0.78% dan 1.56%), fenol,
2,4-bis(1,1-dimetiletil)- (3.73%), asid benzenapropanoik,
3,5-bis(1,1-dimetiletil)-4-hidroksi-, metil ester (1.15%) dan asid n-heksadekanoik (0.59%). GC-EI-MS telah
membantu mengesahkan ketulenan sebatia trans-asid
sinamik yang dipencilkan (100%). Analisis EDX menunjukkan aras tinggi bagi K2O
(79.56%), P2O5 (9.925%), dan SO3 (9.131%) dari
pulpa liofili. Sebatian alifatik seperti alkana dan alkena paling banyak
dikesan dalam hidrochar seperti yang dibuktikan oleh analisis FTIR, Analisis
SEM dan TGA menunjukkan degradasi komponen lignin bagi hidrochar selepas proses
pengkarbonan hidrotermal. Hasil kajian ini menunjukkan pencirian kimia bagi C. cujete dan HTC bagi biojisim pulpa
menjanjikan potensi aplikasi sebagai bahan bakar atau penjerap.
Kata kunci: Crescentia cujete L., pengkarbonan hidrotermal, hidrochar
References
1.
Zhang, B., Heidari, M.,
Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M. and Dutta, A. (2018).
Hydrothermal carbonization of fruit wastes: A promising technique for
generating hydrochar. Energies, 11(8): 2022-2035.
2.
Lucian, M. and Fiori,
L. (2017). Hydrothermal carbonization of waste biomass: Process design, modeling,
energy efficiency and cost analysis. Energies, 10(2): 211-228.
3.
Kantakanit, P.,
Tippayawong, N., Koonaphapdeelert, S. and Pattiya, A. (2018). Hydrochar generation
from hydrothermal carbonization of organic wastes. IOP Conference
Series: Earth and Environmental Science, 159: 1-6.
4.
Wang, T., Zhai, Y.,
Zhu, Y., Li, C. and Zeng, G. (2018). A review of the hydrothermal carbonization
of biomass waste for hydrochar formation: Process conditions, fundamentals, and
physicochemical properties. Renewable and Sustainable Energy Reviews, 90:
223-247.
5.
Arango-Ulloa, J.,
Bohorquez, A., Duque, M. and Maass, B. (2009). Diversity of the calabash tree (Crescentia
cujete L.) in Colombia. Agroforestry Systems, 76(3): 543-553.
6.
Tacio, H. (2015).
Calabash the miracle fruit. https://businessmirror.com.ph/2015/10/15/calabash-the-miracle-fruit/. [Access online 10 October 2019].
7.
Agron, E. (2017). Calabash contains
active ingredients potential for cancer treatment.
http://www.pchrd.dost.gov.ph/index.php/14-r-d-updates/3132-calabash-contains-active-ingredients-potential-for-cancer-treatment. [Access online 10 October 2019].
8.
Morton, J. (1968). The Calabash
(Crescentia cujete) in folk medicine. Economic
Botany, 22(3): 273- 280.
9.
Parvin, M. S., Das, N.,
Jahan, N., Akhter, M. A., Nahar, L. and Islam, M. E. (2015). Evaluation of
in vitro anti-inflammatory and antibacterial potential of Crescentia cujete
leaves and stem bark. BMC Research Notes, 8(1): 412-418.
10.
Jato, J. (2015). Anti-inflammatory,
antimicrobial and antioxidant properties of Margaritaria nobilis,
Stylochiton lancifolius, Drypetes principum, Crescentia cujete and
Albizia glaberrima. Thesis of Master Degree, Kwame Nkrumah University of
Science and Technology, Kumasi, Ghana.
11.
Billacura, M. and
Laciapag, G. C. (2017). Phytochemical screening, cytotoxicity, antioxidant, and
anthelmintic property of the various extracts from Crescentia cujete Linn fruit. Science
International, 29 (2): 31-35.
12.
Billacura, M. and
Pangcoga, K. K. (2017). Phytochemical screening, cytotoxicity, mutagenicity,
antimutagenicity, and protective potentials of the different solvent extracts
from the air-dried leaves of Crescentia
cujete Linn. International Journal of
Advanced and Applied Sciences, 4(4):
118-126.
13.
Rellin, K. F. B., Dasmarińas, D. D. and
Junio, H. A. (2018). Untargeted metabolite profiling of Philippine-grown Crescentia cujete and its commercial
fruit juice using GC-MS and UPLC-HRMS. Philippine
Journal of Science, 147(4):
647-658.
14.
Liu, L., Hudgins, W.,
Shack, S., Yin, M. and Samid, D. (1995). Cinnamic acid: A natural product with
potential use in cancer intervention. International Journal of Cancer, 62(3):
345-350.
15.
Rajisha, K., Deepa, B.,
Pothan, L. and Thomas, S. (2011). Thermomechanical and spectroscopic
characterization of natural fibre composites. Interface Engineering of
Natural Fibre Composites for Maximum Performance: 241-274.
16.
Hood, E. (2016).
Plant-based biofuels. F1000Research, 5: pp. 1-9.
17.
Schaldach, B. and Grützmacher, H.-Fr.
(1980). The fragmentations of substituted cinnamic acids after electron impact.
Organic Mass Spectrometry, 15(4): 175-181.
18.
Lanham-New, S.,
Lambert, H. and Frassetto, L. (2012). Potassium. Advances in Nutrition, 3(6):
820- 821.
19.
Weaver, C. (2013).
Potassium and health. Advances in Nutrition, 4(3): 368S-377S.
20.
Uribarri, J. and Calvo,
M. (2013). Dietary phosphorus intake and health. The American Journal of
Clinical Nutrition, 99(2): 247-248.
21.
Nimni, M., Han, B. and
Cordoba, F. (2007). Are we getting enough sulfur in our diet?. Nutrition
& Metabolism, 4(1): 1-12.
22.
Bost, M., Houdart, S., Oberli, M.,
Kalonji, E., Huneau, J. and Margaritis, I. (2016). Dietary copper and human
health: Current evidence and unresolved issues. Journal of Trace Elements in
Medicine and Biology, 35: 107-115.
23.
Ghaffar, S. H. and Fan,
M. (2013). Structural analysis for lignin characteristics in biomass
straw. Biomass and Bioenergy, 57: 264-279.
24.
Zhang, X., Gao, B.,
Fang, J., Zou, W., Dong, L. and Cao, C. (2019). Chemically activated hydrochar
as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 218:
680-686.
25.
Plavniece, A.,
Zhurinsh, A., Dobele, G. and Locs, J. (2019). Chemically activated hydrochar
flakes from birch wood. Key Engineering Materials, 800: 261-266.