Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 134 - 145

 

 

 

 

INSIGHTS ON THE CHEMICAL CONSTITUENTS AND HYDROTHERMAL CARBONIZATION OF Crescentia cujete L.

 

(Pencirian Jujukan Kimia dan Pengkarbonan Hidrotermal bagi Crescentia cujete L.)

 

Judith Clarisse Jose1, Glenn Oyong2, Michael Dominic Ajero3, Irving Chiong3, Esperanza Cabrera1,2, Maria Carmen S. Tan3*,

 

1Biology Department

2Molecular Science Unit Laboratory Center for Natural Sciences and Environmental Research

3Chemistry Department

De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines

 

*Corresponding author:  maria.carmen.tan@dlsu.edu.ph

 

 

Received: 12 December 2019; Accepted: 21 January 2020

 

 

Abstract

Crescentia cujete L. is an evergreen tree that presents several medicinal and industrial applications. This study primarily aimed to present preliminary characterization of the fruit extracts and fruit pulp of Crescentia cujete L. using several analytical techniques. Characterization of the crude MeOH extract and pure compound, trans-cinnamic acid, isolated from the fruit extract were performed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). Lyophilized pulp was characterized by energy dispersive X-ray spectroscopy (EDX). Hydrochar samples resulting from hydrothermal carbonization (HTC) of fruit pulp were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Eight constituents were eluted from the crude MeOH extract which were mainly composed of furan (5-Hydroxymethylfurfural, 53.99%), a pyranone derivative (2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 8.68%) and a carboxylic acid (3-phenyl-2-propenoic acid, 7.94% or compound 5). Other notable compounds of the extract include furaneol (0.78% and 1.56%), phenol, 2,4-bis(1,1-dimethylethyl)- (3.73%), benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester (1.15%) and n-hexadecanoic acid (0.59%). GC-EI-MS confirmed the purity of the isolated compound trans-cinnamic acid (100%). EDX analysis showed high levels of K2O (79.56%), P2O5 (9.925%), and SO3 (9.131%) from the lyophilized pulp. Aliphatic compounds such as alkanes and alkenes were mostly present in both hydrochars as revealed by FTIR analyses. SEM and TGA analyses showed degradation of the lignin components of both hydrochars after the hydrothermal carbonization process. These results present the chemical characterization of the C. cujete fruit and the HTC of the pulp biomass which exhibited promising properties for applications as solid fuel or as an adsorbent.

 

Keywords:  Crescentia cujete L., hydrothermal carbonization, hydrochar

 

Abstrak

Crescentia cujete L. ialah tumbuhan yang digunakan dalam perubatan dan aplikasi industri. Kajian ini dijalankan dengan tujuan melakukan saringan pencirian ekstrak buah dan pulpa Crescentia cujete L. menggunakan beberapa teknik analisis. Pencirian esktrak mentah MeOH dan sebatian tulen, trans-asid sinamik, dipencil dari ekstrak buah dilakukan menggunakan kromatografi gas-pengionan elektron-spektrometri jisim (GC-EI-MS). Pulpa liofili dicirikan melalui spektroskopi sinar-X tenaga serakan (EDX). Sampel hidrochar yang terhasil dari pengkarbonan hidrotermal (HTC) pulpa buah telah dicirikan menggunakan spektroskopi infremerah transformasi Fourier (FTIR), mikroskopi imbasan elektron (SEM) dan analisis termogravimetrik (TGA). Lapan jujukan kimia yang terelusi dari ekstrak mentah MeOH terdiri daripada furan (5-hidroksimetilfurfural, 55.99%), terbitan piranon (2,3-dihidro-3,4-dihidroksi-6-metil-4H-piran-4-on, 8.68%) dan asid karbosilik (3-fenil-2-asid propenoik, 7.94% atau sebatian 5). Sebatian lain yang dikenal pasti dari ekstrak termasuklah furaneol (0.78% dan 1.56%), fenol, 2,4-bis(1,1-dimetiletil)- (3.73%), asid benzenapropanoik, 3,5-bis(1,1-dimetiletil)-4-hidroksi-, metil ester (1.15%) dan asid n-heksadekanoik (0.59%). GC-EI-MS telah membantu mengesahkan ketulenan sebatia trans-asid sinamik yang dipencilkan (100%). Analisis EDX menunjukkan aras tinggi bagi K2O (79.56%), P2O5 (9.925%), dan SO3 (9.131%) dari pulpa liofili. Sebatian alifatik seperti alkana dan alkena paling banyak dikesan dalam hidrochar seperti yang dibuktikan oleh analisis FTIR, Analisis SEM dan TGA menunjukkan degradasi komponen lignin bagi hidrochar selepas proses pengkarbonan hidrotermal. Hasil kajian ini menunjukkan pencirian kimia bagi C. cujete dan HTC bagi biojisim pulpa menjanjikan potensi aplikasi sebagai bahan bakar atau penjerap.

 

Kata kunci:  Crescentia cujete L., pengkarbonan hidrotermal, hidrochar

 

References

1.       Zhang, B., Heidari, M., Regmi, B., Salaudeen, S., Arku, P., Thimmannagari, M. and Dutta, A. (2018). Hydrothermal carbonization of fruit wastes: A promising technique for generating hydrochar. Energies, 11(8): 2022-2035.

2.       Lucian, M. and Fiori, L. (2017). Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies, 10(2): 211-228.

3.       Kantakanit, P., Tippayawong, N., Koonaphapdeelert, S. and Pattiya, A. (2018). Hydrochar generation from hydrothermal carbonization of organic wastes. IOP Conference Series: Earth and Environmental Science, 159: 1-6.

4.       Wang, T., Zhai, Y., Zhu, Y., Li, C. and Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews, 90: 223-247.

5.       Arango-Ulloa, J., Bohorquez, A., Duque, M. and Maass, B. (2009). Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agroforestry Systems, 76(3): 543-553.

6.       Tacio, H. (2015). Calabash the miracle fruit. https://businessmirror.com.ph/2015/10/15/calabash-the-miracle-fruit/. [Access online 10 October 2019].

7.       Agron, E. (2017). Calabash contains active ingredients potential for cancer treatment. http://www.pchrd.dost.gov.ph/index.php/14-r-d-updates/3132-calabash-contains-active-ingredients-potential-for-cancer-treatment. [Access online 10 October 2019].

8.       Morton, J. (1968). The Calabash (Crescentia cujete) in folk medicine. Economic Botany, 22(3): 273- 280.

9.       Parvin, M. S., Das, N., Jahan, N., Akhter, M. A., Nahar, L. and Islam, M. E. (2015). Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. BMC Research Notes, 8(1): 412-418. 

10.    Jato, J. (2015). Anti-inflammatory, antimicrobial and antioxidant properties of Margaritaria nobilis, Stylochiton lancifolius, Drypetes principum, Crescentia cujete and Albizia glaberrima. Thesis of Master Degree, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 

11.    Billacura, M. and Laciapag, G. C. (2017). Phytochemical screening, cytotoxicity, antioxidant, and anthelmintic property of the various extracts from Crescentia cujete Linn fruit. Science International, 29 (2): 31-35.

12.    Billacura, M. and Pangcoga, K. K. (2017). Phytochemical screening, cytotoxicity, mutagenicity, antimutagenicity, and protective potentials of the different solvent extracts from the air-dried leaves of Crescentia cujete Linn. International Journal of Advanced and Applied Sciences, 4(4): 118-126.

13.    Rellin, K. F. B., Dasmarińas, D. D. and Junio, H. A. (2018). Untargeted metabolite profiling of Philippine-grown Crescentia cujete and its commercial fruit juice using GC-MS and UPLC-HRMS. Philippine Journal of Science, 147(4): 647-658.

14.    Liu, L., Hudgins, W., Shack, S., Yin, M. and Samid, D. (1995). Cinnamic acid: A natural product with potential use in cancer intervention. International Journal of Cancer, 62(3): 345-350.

15.    Rajisha, K., Deepa, B., Pothan, L. and Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. Interface Engineering of Natural Fibre Composites for Maximum Performance: 241-274.

16.    Hood, E. (2016). Plant-based biofuels. F1000Research, 5: pp. 1-9.

17.    Schaldach, B. and Grützmacher, H.-Fr. (1980). The fragmentations of substituted cinnamic acids after electron impact. Organic Mass Spectrometry, 15(4): 175-181.

18.    Lanham-New, S., Lambert, H. and Frassetto, L. (2012). Potassium. Advances in Nutrition, 3(6): 820- 821.

19.    Weaver, C. (2013). Potassium and health. Advances in Nutrition, 4(3): 368S-377S.

20.    Uribarri, J. and Calvo, M. (2013). Dietary phosphorus intake and health. The American Journal of Clinical Nutrition, 99(2): 247-248.

21.    Nimni, M., Han, B. and Cordoba, F. (2007). Are we getting enough sulfur in our diet?. Nutrition & Metabolism, 4(1): 1-12.

22.    Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. and Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35: 107-115.

23.    Ghaffar, S. H. and Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57: 264-279. 

24.    Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L. and Cao, C. (2019). Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 218: 680-686.

25.    Plavniece, A., Zhurinsh, A., Dobele, G. and Locs, J. (2019). Chemically activated hydrochar flakes from birch wood. Key Engineering Materials, 800: 261-266.