Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 146 - 158
EXTRACTION
OF 4-OCTYLPHENOL AND 4-NONYLPHENOL IN RIVER WATER USING SOLID-PHASE EXTRACTION
AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY
(Pengekstrakan 4-Oktilfenol dan 4-Nonilfenol di dalam Air
Sungai Menggunakan Pengekstrakan Fasa Pepejal dan Kromatografi Cecair Prestasi
Tinggi)
Mohd Zahid Baharom1,
Nurulnadia Mohd Yusoff1,2*, Wan Mohd Afiq Wan Mohd Khalik1, Marinah Mohd Ariffin1,
Jamilah Karim3, Syazrin Syima Sharifuddin3
1Faculty of Science and Marine Environment
2Institute of Oceanography and Environment
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Water Quality Laboratory,
National
Hydraulic Research Institute of Malaysia, 43300 Seri Kembangan, Selangor,
Malaysia
*Corresponding
author: nurulnadia@umt.edu.my
Received: 20 November 2019;
Accepted: 2 February 2020
Abstract
An analytical method based on
solid-phase extraction (SPE) combined with high performance liquid
chromatography-photometric diode array (HPLC-PDA) was developed to determine
4-octylphenol (4-OP) and 4-nonylphenol (4-NP) in river water samples. The
optimum SPE working conditions were secured with 200 mL sample loading and
eluted with 10 mL of methanol and acetone (1:1, v/v) as re-constitute
solvents. Acetonitrile and deionized water (80:20, v/v) were used as
mobile phase with 225 nm set as the optimum wavelength. Good linearity for 4-OP
and 4-NP were obtained in the range of 0.001–0.012 mg/L whereby the regression
coefficient R2 was 0.9988 and 0.9995, respectively. Limit of
detections (LOD) and quantifications (LOQ) for 4-OP and 4-NP were calculated at
LOD = 0.0006 and 0.0001 mg/L and LOQ = 0.0020 and 0.0005 mg/L, respectively.
The recovery percentages obtained for three levels concentrations (0.005, 0.010
and 0.050 mg/L) were ranged from 41.0 to 114%. Repeatability for 4-OP and 4-NP
has shown good performance with low relative standard deviation (< 2%). In
the real sample, the measured concentrations of 4-OP and 4-NP were detected
with 0.001 and 0.0003 mg/L, respectively. Liquid chromatography-mass tandem spectrometry
(LC-MS/MS) equipped with Agilent Jet Stream Technology and electrospray
ionization (AJS-ESI) was used to confirm the presence of 4-OP and 4-NP in the
water sample. Overall, the method proposed can be accepted for further water
sample analysis.
Keywords: endocrine-disrupting
chemical, water quality, emerging pollutants, liquid chromatography-mass
spectrometry
Abstrak
Kaedah analisis
berdasarkan gabungan pengesktrakan fasa pepejal (SPE) dengan kromatografi
cecair prestasi tinggi susunan diod fotometrik (HPLC-PDA) telah dibangunkan
untuk penentuan 4-oktilfenol (4-OP) dan 4-nonilfenol (4-NP) di dalam sampel air
sungai. Keadaan optimum SPE telah diperolehi dengan 200 mL sampel air dan
dielusi dengan 10 mL metanol dan aseton (1:1, v/v) sebagai pelarut
rekonstruksi. Asetonitril dan air suling (80:20, v/v) telah digunakan
sebagai fasa gerak di mana panjang gelombang optimum ditetapkan pada 225 nm.
Kelinearan yang baik untuk 4-OP dan 4-NP telah diperolehi pada julat
0.001–0.012 mg/L dan nilai pekali regresi R2 iaitu masing-masing
dengan 0.9988 dan 0.9995. Had pengesanan (LOD) dan kuantifikasi (LOQ) untuk
4-OP dan 4-NP telah dihitung masing-masing pada LOD = 0.0006 dan 0.0001 mg/L
dan LOQ = 0.0020 dan 0.0005 mg/L. Peratusan pemulihan yang telah diperolehi
pada tiga aras kepekatan (0.005, 0.010 and 0.050 mg/L) adalah pada julat antara
41.0 hingga 114%. Kebolehulangan untuk 4-OP dan 4-NP menunjukkan prestasi yang
baik dengan nilai sisihan piawai relatif yang rendah (< 2%). Di dalam sampel
sebenar, kepekatan yang diukur untuk 4-OP dan 4-NP adalah dikira masing-masing
dengan 0.001 dan 0.0003 mg/L. Spektrometri jisim cecair kromatografi (LC-MS/MS)
bersama Teknologi Agilent Jet Aliran pengionan elektro-semburan (AJS-ESI) telah
digunakan untuk mengesahkan kehadiran 4-OP dan 4-NP di dalam sampel air. Secara
keseluruhannya, kaedah yang telah dibangunkan boleh diterima dan diguna pakai
untuk analisis sampel air.
Kata kunci: kimia penganggu endokrin, kualiti air,
pencemar memuncul, kromatografi cecair-jisim spektrometri
References
1.
Toor, J. S., & Sikka, S. C. (2017).
Developmental and reproductive disorders-role of endocrine disruptors in
testicular toxicity. reproductive and developmental toxicology. Elsevier Inc.
2.
Tapiero, H., Nguyen, B. G. and Tew K. D.
(2002). Estrogens and environmental estrogens. Biomedicine &
Pharmacotherapy, 56: 36-44.
3.
Imai, S., Koyama, J. and Fuiji, K.
(2007). Effects of estrone on full life cycle of Java medaka, a new marine test
fish. Environmental Toxicology & Chemistry, 26: 726-731.
4.
Yusoff, N. M., Koyama, J. and Uno, S.
(2017). Bioaccumulation of sedimentary endocrine disrupting chemicals (EDCs) by
the benthic fish, Pleuronectes yokohamae.
Malaysian Journal of Analytical Science, 21(3): 535-543.
5.
Geyer, H. J., Rimkus, G. G., Scheunert, I., Kaune, A., Schramm., K.-W.,
Kettrup, A., Zeeman, M., Muir, D. C. G. and Mackay, D. (2005). Bioaccumulation
and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic
pollutants (POPs), and other organic compounds in fish and other organisms
including humans. Bioaccumulation – New Aspects and Developments, 2: pp.
1-166.
6.
Duong, C. N., Ra, J. S., Cho, J., Kim,
S. D., Choi, H. K., Park, J. H., Kim, K. W., Inam, E. and Kim, S. D. (2010).
Estrogenic chemicals and estrogenicity in river waters of South Korea and seven
Asian countries. Chemosphere, 78(3): 286-293.
7.
Tan, B. L. L. and Mustafa, A. M. (2004).
The monitoring of pesticides and alkylphenols in selected rivers in the State
of Selangor, Malaysia. Asia-Pacific Journal of Public Health, 16(1):
54-63.
8.
Jobling, S., Coey, S., Whitmore, J. G.,
Kime, D. E., Van Look, K. J. W., McAllister, B. G., Beresford, N., Henshaw, A.
C., Brighty, G., Tyler, C. R. and Sumpter, J. P. (2002). Wild intersex roach (Rutilus
rutilus) have reduced fertility, Biology of Reproduction, 67:
515-524.
9.
Sumpter, J. P. and Johnson, A. C.
(2005). Lessons from endocrine disruption and their application to other issues
concerning trace organics in the aquatic environment. Environmental Science
& Technology, 39(12): 4321-4332.
10.
Burki, R., Vermeirssen, E. L. M.,
Körner, O., Joris, C., Burkhardt-Holm, P. and Segner, H. (2006). Assessment of
estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland
river: Integrated analysis of passive samplers, wild and caged fish, and
vitellogenin mRNA and protein. Environmental Toxicology and Chemistry,
25(8): 2077-2086.
11.
Cheek, A. O. (2006). Subtle sabotage:
endocrine disruption in wild populations, Revista De Biologia Tropical,
54: 1-19.
12.
Cherniaev, A. P., Kondakova, A. S. and
Zyk, E. N. (2016). Contents of 4-nonylphenol in surface sea water of Amur Bay
(Japan/East Sea). Achievements in the Life Sciences, 10(1): 65-71.
13.
Kannan, K., Keith, T. L., Naylor, C. G.,
Staples, C. A., Snyder, S. A. and Giesy, J. P. (2003). Nonylphenol and
nonylphenol ethoxylates in fish, sediment, and Water from the Kalamazoo River,
Michigan. Achieve Environmental and Contamination Toxicology, 44: 77-82.
14.
Wang, W., Ndungu, A. W. and Wang, J.
(2016). Monitoring of endocrine-disrupting compounds in surface water and
sediments of the three Gorges reservoir region, China. Archives of
Environmental Contamination and Toxicology, 71(4): 509–517.
15.
Wang, B., Dong, F., Chen, S., Chen, M.,
Bai, Y., Tan, J., Li, F. and Wang, Q. (2016). Phenolic endocrine disrupting
chemicals in an urban receiving river (Panlong River) of Yunnan-Guizhou
plateau: Occurrence, bioaccumulation and sources. Ecotoxicology and
Environmental Safety, 128: 133-142.
16.
Cheng, J. R., Wang,
K., Yu, J., Yu, Z. X. Y., Biao, X. and Zhang, Z. (2018). Distribution and fate
modeling of 4-nonylphenol, 4-t-octylphenol, and bisphenol A in the Yong River
of China. Chemosphere, 195: 594-605.
17.
Oluseyi, T.,
Olayinka, K., Alo, B. and Smith, R. M. (2011). Improved analytical extraction
and clean-up techniques for the determination of PAHs in contaminated soil
samples. International Journal of Environmental Research, 5(3): 681-690.
18.
Careri, M., Elviri, L. and Mangia, A.
(2001). Development and validation of a method using on-line solid-phase
extraction and liquid chromatography with ultraviolet detection for the
determination of bisphenol A, octylphenol, and nonylphenol in groundwater. Journal
of AOAC International, 84(5): 1383-1392.
19.
Liu, R., Zhou, J. L. and Wilding, A.
(2004). Simultaneous determination of endocrine disrupting phenolic compounds
and steroids in water by solid-phase extraction-gas chromatography-mass
spectrometry. Journal of Chromatography A, 1022(1-2): 179-189.
20.
Ahel, M. and Giger, W. (1993).
Partitioning of alkylphenols and alkylphenol polyethoxylates between water and
organic solvents. Chemosphere, 26(8): 1471-1478.
21.
Yusoff, N. M., Koyama, J., Uno, S.,
Kito, A., Kokushi, E., Bacolod, E. T., Ito, K. and Chuman, Y. (2014).
Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo River
mouth, Osaka Bay, Japan. Environmental Monitoring and Assessment,
186(3): 1453-1463.
22.
Xu, J., Wang, P., Guo, W., Dong, J.,
Wang, L. and Dai, S. (2006). Seasonal and spatial distribution of nonylphenol
in Lanzhou Reach of Yellow River in China. Chemosphere, 65(9):
1445-1451.
23.
Al Qaim, F. F., Jusof, S. H., Abdullah,
M. P., Mussa, Z. H., Tahrim, N. A., Khalik, W. M. A. W. M. and Othman, M. R.
(2017). Determination of caffeine in surface water using solid phase extraction
and high performance liquid chromatography. Malaysian Journal of Analytical
Sciences, 21(1): 95-104.
24.
Moldoveanu, S. and David, V. (2015).
Chapter 6 Solvent Extraction. Modern Sample Preparation for Chromatography. Chromatography
Elsevier, 2015: pp 131-189
25.
Dai, J. and Mumper, R. J. (2010). Plant
phenolics: Extraction, analysis and their antioxidant and anticancer
properties. Molecules, 15(10):
7313-7352.
26.
Baghdady, Y. Z. and Schug, K. A. (2016).
Evaluation of efficiency and trapping capacity of restricted access media trap
columns for the online trapping of small molecules. Journal of Separation
Science, 39(21): 4183-4191.
27.
Ying, G. G., Kookana, R. S. and Chen, Z.
(2002). On-line solid-phase extraction and fluorescence detection of selected
endocrine disrupting chemicals in water by high-performance liquid
chromatography. Journal of Environmental Science and Health - Part B
Pesticides, Food Contaminants, and Agricultural Wastes, 37(3):
225-234.
28.
Wee, S. Y., Omar, T. F. T., Aris, A. Z.
and Lee, Y. (2016). Surface water organophosphorus pesticides concentration and
distribution in the Langat River, Selangor, Malaysia. Exposure and Health,
8(4): 497-511.
29.
Wang, B., Dong, F., Chen, S., Chen, M.,
Bai, Y., Tan, J., Li, F. and Wang, Q. (2016). Phenolic endocrine disrupting
chemicals in an urban receiving river (Panlong river) of Yunnan-Guizhou
plateau: Occurrence, bioaccumulation and sources. Ecotoxicology and
Environmental Safety, 128: 133-142.
30.
Salgueiro-González, N., Turnes-Carou,
I., Besada, V., Muniategui-Lorenzo, S., López-Mahía, P. and Prada-Rodríguez, D.
(2015). Occurrence, distribution and bioaccumulation of endocrine disrupting
compounds in water, sediment and biota samples from a European river basin. Science
of the Total Environment, 529: 121-130.