Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 146 - 158

 

 

 

 

EXTRACTION OF 4-OCTYLPHENOL AND 4-NONYLPHENOL IN RIVER WATER USING SOLID-PHASE EXTRACTION AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

 

(Pengekstrakan 4-Oktilfenol dan 4-Nonilfenol di dalam Air Sungai Menggunakan Pengekstrakan Fasa Pepejal dan Kromatografi Cecair Prestasi Tinggi)

 

Mohd Zahid Baharom1, Nurulnadia Mohd Yusoff1,2*, Wan Mohd Afiq Wan Mohd Khalik1, Marinah Mohd Ariffin1, Jamilah Karim3, Syazrin Syima Sharifuddin3

 

1Faculty of Science and Marine Environment

2Institute of Oceanography and Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Water Quality Laboratory,

National Hydraulic Research Institute of Malaysia, 43300 Seri Kembangan, Selangor, Malaysia

 

*Corresponding author:  nurulnadia@umt.edu.my

 

 

Received: 20 November 2019; Accepted: 2 February 2020

 

 

Abstract

An analytical method based on solid-phase extraction (SPE) combined with high performance liquid chromatography-photometric diode array (HPLC-PDA) was developed to determine 4-octylphenol (4-OP) and 4-nonylphenol (4-NP) in river water samples. The optimum SPE working conditions were secured with 200 mL sample loading and eluted with 10 mL of methanol and acetone (1:1, v/v) as re-constitute solvents. Acetonitrile and deionized water (80:20, v/v) were used as mobile phase with 225 nm set as the optimum wavelength. Good linearity for 4-OP and 4-NP were obtained in the range of 0.001–0.012 mg/L whereby the regression coefficient R2 was 0.9988 and 0.9995, respectively. Limit of detections (LOD) and quantifications (LOQ) for 4-OP and 4-NP were calculated at LOD = 0.0006 and 0.0001 mg/L and LOQ = 0.0020 and 0.0005 mg/L, respectively. The recovery percentages obtained for three levels concentrations (0.005, 0.010 and 0.050 mg/L) were ranged from 41.0 to 114%. Repeatability for 4-OP and 4-NP has shown good performance with low relative standard deviation (< 2%). In the real sample, the measured concentrations of 4-OP and 4-NP were detected with 0.001 and 0.0003 mg/L, respectively. Liquid chromatography-mass tandem spectrometry (LC-MS/MS) equipped with Agilent Jet Stream Technology and electrospray ionization (AJS-ESI) was used to confirm the presence of 4-OP and 4-NP in the water sample. Overall, the method proposed can be accepted for further water sample analysis.

 

Keywords:  endocrine-disrupting chemical, water quality, emerging pollutants, liquid chromatography-mass spectrometry

 

Abstrak

Kaedah analisis berdasarkan gabungan pengesktrakan fasa pepejal (SPE) dengan kromatografi cecair prestasi tinggi susunan diod fotometrik (HPLC-PDA) telah dibangunkan untuk penentuan 4-oktilfenol (4-OP) dan 4-nonilfenol (4-NP) di dalam sampel air sungai. Keadaan optimum SPE telah diperolehi dengan 200 mL sampel air dan dielusi dengan 10 mL metanol dan aseton (1:1, v/v) sebagai pelarut rekonstruksi. Asetonitril dan air suling (80:20, v/v) telah digunakan sebagai fasa gerak di mana panjang gelombang optimum ditetapkan pada 225 nm. Kelinearan yang baik untuk 4-OP dan 4-NP telah diperolehi pada julat 0.001–0.012 mg/L dan nilai pekali regresi R2 iaitu masing-masing dengan 0.9988 dan 0.9995. Had pengesanan (LOD) dan kuantifikasi (LOQ) untuk 4-OP dan 4-NP telah dihitung masing-masing pada LOD = 0.0006 dan 0.0001 mg/L dan LOQ = 0.0020 dan 0.0005 mg/L. Peratusan pemulihan yang telah diperolehi pada tiga aras kepekatan (0.005, 0.010 and 0.050 mg/L) adalah pada julat antara 41.0 hingga 114%. Kebolehulangan untuk 4-OP dan 4-NP menunjukkan prestasi yang baik dengan nilai sisihan piawai relatif yang rendah (< 2%). Di dalam sampel sebenar, kepekatan yang diukur untuk 4-OP dan 4-NP adalah dikira masing-masing dengan 0.001 dan 0.0003 mg/L. Spektrometri jisim cecair kromatografi (LC-MS/MS) bersama Teknologi Agilent Jet Aliran pengionan elektro-semburan (AJS-ESI) telah digunakan untuk mengesahkan kehadiran 4-OP dan 4-NP di dalam sampel air. Secara keseluruhannya, kaedah yang telah dibangunkan boleh diterima dan diguna pakai untuk analisis sampel air.

 

Kata kunci:  kimia penganggu endokrin, kualiti air, pencemar memuncul, kromatografi cecair-jisim spektrometri

 

References

1.       Toor, J. S., & Sikka, S. C. (2017). Developmental and reproductive disorders-role of endocrine disruptors in testicular toxicity. reproductive and developmental toxicology. Elsevier Inc.

2.       Tapiero, H., Nguyen, B. G. and Tew K. D. (2002). Estrogens and environmental estrogens. Biomedicine & Pharmacotherapy, 56: 36-44.

3.       Imai, S., Koyama, J. and Fuiji, K. (2007). Effects of estrone on full life cycle of Java medaka, a new marine test fish. Environmental Toxicology & Chemistry, 26: 726-731.

4.       Yusoff, N. M., Koyama, J. and Uno, S. (2017). Bioaccumulation of sedimentary endocrine disrupting chemicals (EDCs) by the benthic fish, Pleuronectes yokohamae. Malaysian Journal of Analytical Science, 21(3): 535-543.

5.       Geyer, H. J., Rimkus, G. G., Scheunert, I., Kaune, A., Schramm., K.-W., Kettrup, A., Zeeman, M., Muir, D. C. G. and Mackay, D. (2005). Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. Bioaccumulation – New Aspects and Developments, 2: pp. 1-166.

6.       Duong, C. N., Ra, J. S., Cho, J., Kim, S. D., Choi, H. K., Park, J. H., Kim, K. W., Inam, E. and Kim, S. D. (2010). Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere, 78(3): 286-293.

7.       Tan, B. L. L. and Mustafa, A. M. (2004). The monitoring of pesticides and alkylphenols in selected rivers in the State of Selangor, Malaysia. Asia-Pacific Journal of Public Health, 16(1): 54-63.

8.       Jobling, S., Coey, S., Whitmore, J. G., Kime, D. E., Van Look, K. J. W., McAllister, B. G., Beresford, N., Henshaw, A. C., Brighty, G., Tyler, C. R. and Sumpter, J. P. (2002). Wild intersex roach (Rutilus rutilus) have reduced fertility, Biology of Reproduction, 67: 515-524.

9.       Sumpter, J. P. and Johnson, A. C. (2005). Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environmental Science & Technology, 39(12): 4321-4332.

10.    Burki, R., Vermeirssen, E. L. M., Körner, O., Joris, C., Burkhardt-Holm, P. and Segner, H. (2006). Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: Integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environmental Toxicology and Chemistry, 25(8): 2077-2086.

11.    Cheek, A. O. (2006). Subtle sabotage: endocrine disruption in wild populations, Revista De Biologia Tropical, 54: 1-19.

12.    Cherniaev, A. P., Kondakova, A. S. and Zyk, E. N. (2016). Contents of 4-nonylphenol in surface sea water of Amur Bay (Japan/East Sea). Achievements in the Life Sciences, 10(1): 65-71.

13.    Kannan, K., Keith, T. L., Naylor, C. G., Staples, C. A., Snyder, S. A. and Giesy, J. P. (2003). Nonylphenol and nonylphenol ethoxylates in fish, sediment, and Water from the Kalamazoo River, Michigan. Achieve Environmental and Contamination Toxicology, 44: 77-82.

14.    Wang, W., Ndungu, A. W. and Wang, J. (2016). Monitoring of endocrine-disrupting compounds in surface water and sediments of the three Gorges reservoir region, China. Archives of Environmental Contamination and Toxicology, 71(4): 509–517.

15.    Wang, B., Dong, F., Chen, S., Chen, M., Bai, Y., Tan, J., Li, F. and Wang, Q. (2016). Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong River) of Yunnan-Guizhou plateau: Occurrence, bioaccumulation and sources. Ecotoxicology and Environmental Safety, 128: 133-142.

16.    Cheng, J. R., Wang, K., Yu, J., Yu, Z. X. Y., Biao, X. and Zhang, Z. (2018). Distribution and fate modeling of 4-nonylphenol, 4-t-octylphenol, and bisphenol A in the Yong River of China. Chemosphere, 195: 594-605.

17.    Oluseyi, T., Olayinka, K., Alo, B. and Smith, R. M. (2011). Improved analytical extraction and clean-up techniques for the determination of PAHs in contaminated soil samples. International Journal of Environmental Research, 5(3): 681-690.

18.    Careri, M., Elviri, L. and Mangia, A. (2001). Development and validation of a method using on-line solid-phase extraction and liquid chromatography with ultraviolet detection for the determination of bisphenol A, octylphenol, and nonylphenol in groundwater. Journal of AOAC International, 84(5): 1383-1392.

19.    Liu, R., Zhou, J. L. and Wilding, A. (2004). Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. Journal of Chromatography A, 1022(1-2): 179-189.

20.    Ahel, M. and Giger, W. (1993). Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 26(8): 1471-1478.

21.    Yusoff, N. M., Koyama, J., Uno, S., Kito, A., Kokushi, E., Bacolod, E. T., Ito, K. and Chuman, Y. (2014). Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo River mouth, Osaka Bay, Japan. Environmental Monitoring and Assessment, 186(3): 1453-1463.

22.    Xu, J., Wang, P., Guo, W., Dong, J., Wang, L. and Dai, S. (2006). Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere, 65(9): 1445-1451.

23.    Al Qaim, F. F., Jusof, S. H., Abdullah, M. P., Mussa, Z. H., Tahrim, N. A., Khalik, W. M. A. W. M. and Othman, M. R. (2017). Determination of caffeine in surface water using solid phase extraction and high performance liquid chromatography. Malaysian Journal of Analytical Sciences, 21(1): 95-104.

24.    Moldoveanu, S. and David, V. (2015). Chapter 6 Solvent Extraction. Modern Sample Preparation for Chromatography. Chromatography Elsevier, 2015: pp 131-189

25.    Dai, J. and Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10): 7313-7352.

26.    Baghdady, Y. Z. and Schug, K. A. (2016). Evaluation of efficiency and trapping capacity of restricted access media trap columns for the online trapping of small molecules. Journal of Separation Science, 39(21): 4183-4191.

27.    Ying, G. G., Kookana, R. S. and Chen, Z. (2002). On-line solid-phase extraction and fluorescence detection of selected endocrine disrupting chemicals in water by high-performance liquid chromatography. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 37(3): 225-234. 

28.    Wee, S. Y., Omar, T. F. T., Aris, A. Z. and Lee, Y. (2016). Surface water organophosphorus pesticides concentration and distribution in the Langat River, Selangor, Malaysia. Exposure and Health, 8(4): 497-511.

29.    Wang, B., Dong, F., Chen, S., Chen, M., Bai, Y., Tan, J., Li, F. and Wang, Q. (2016). Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan-Guizhou plateau: Occurrence, bioaccumulation and sources. Ecotoxicology and Environmental Safety, 128: 133-142.

30.    Salgueiro-González, N., Turnes-Carou, I., Besada, V., Muniategui-Lorenzo, S., López-Mahía, P. and Prada-Rodríguez, D. (2015). Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin. Science of the Total Environment, 529: 121-130.