Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 115 - 124

 

 

 

 

MAGNETIC KAOLINITE COMPOSITE FOR LEAD REMOVAL IN AQUEOUS SOLUTION

 

(Komposit Kaolinit Bermagnetik Untuk Penyingkiran Plumbum Dari Larutan Akueus)

 

Izzan Salwana Izman, Siti Nor Atika Baharin, Ruhaida Rusmin*

 

School of Chemistry and Environment, Faculty of Applied Sciences

Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author:  ruhaida@uitm.edu.my

 

 

Received: 20 November 2019; Accepted: 21 January 2020

 

 

Abstract

Magnetic kaolinite composite was successfully synthesized using combination of kaolinite and iron oxide through co-precipitation method. The synthesized kaolinite-iron oxide (Kao-IO) and raw kaolinite (Kao) was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). The Kao-IO composite was used to remove Pb2+ ions from aqueous solution through adsorption studies under various experimental conditions (e.g. pH, contact time, and initial Pb concentration). Meanwhile the desorption studies of Pb loaded Kao-IO were performed with different desorbing agents. The optimum experimental condition was achieved at pH 6, reaction time of 120 min at initial concentration ranged from 10 to 70 mg/L. Kao-IO composite has a higher adsorption capacity (30.93 mg g-1) compared to Kao (25.04 mg g-1). Ethylenediaminetetraacetic acid (EDTA) was the best desorbing agent with the highest desorption efficiency (39.18%). Overall, Kao-IO composite demonstrated high potential as suitable adsorbent to treat Pb contaminated water.

 

Keywords:  kaolinite, magnetic, iron oxide, lead, adsorption

 

Abstrak

Komposit kaolinit bermagnetik telah berjaya disintesis menggunakan gabungan kaolinit dan ferum oksida melalui kaedah pemendakan bersama. Kaolinit-ferum oksida (Kao-IO) dan kaolinit asli (Kao) dicirikan menggunakan pembelauan sinar-X (XRD), Mikroskop imbasan elektron (SEM) dan spektroskopi inframerah transformasi Fourier (FTIR). Komposit Kao-IO digunakan untuk menyingkirkan ion Pb2+ dari larutan akueus melalui kajian penjerapan dengan menggunakan pelbagai parameter eksperimen (contohnya pH, masa tindak balas dan kepekatan awal Pb). Sementara itu, kajian nyahjerapan Pb yang terjerap pada Kao-IO dilakukan menggunakan pelbagai ejen nyahjerapan. Parameter eksperimen yang optima dicapai pada pH 6, masa tindak balas 120 minit dan pada kepekatan awal antara 10 hingga 70 mg/L. Komposit Kao-IO menunjukkan kapasiti penjerapan yang lebih tinggi (30.93 mg g-1) berbanding dengan Kao (25.04 mg g-1). Asid etilinadiaminatetraasetik (EDTA) merupakan ejen nyahjerapan yang terbaik dengan kecekapan nyahjerapan tertinggi (39.18%). Secara keseluruhan, komposit Kao-IO menunjukkan potensi yang tinggi sebagai penjerap yang sesuai untuk merawat air yang tercemar dengan Pb.

 

Kata kunci:  kaolinit, magnetik, ferum oksida, plumbum, penjerapan

 

References

1.     Ali, R. M., Hamad, H. A., Hussein, M. M. and Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering, 91: 317-332.

2.     Landrigan, P. J., Fuller, R., Fisher, S., Suk, W. A., Sly, P., Chiles, T. C. and Bose-O’Reilly, S. (2019). Pollution and children’s health. Science of the Total Environment, 650: 2389-2394.

3.     Sari, A. and Tuzen, M. (2014). Cd(II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 88: 63-72.

4.     Tokarčíková, M., Tokarský, J., Kutláková, K.M. and Seidlerová, J. (2017). Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions. Journal of Solid State Chemistry, 253: 329-335.

5.     Gao, W., Zhao, S., Wu, H., Deligeer, W. and Asuha, S. (2016). Direct acid activation of kaolinite and its effects on the adsorption of methylene blue. Applied Clay Science, 126: 98-106.

6.     Duarte-Silva, R., Villa-García, M. A., Rendueles, M. and Díaz, M. (2014). Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Applied Clay Science, 90: 73-80.

7.     Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J. X. and Chen, T. H. (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 166(2-3): 821-829.

8.     Rusmin, R., Sarkar, B., Tsuzuki, T., Kawashima, N. and Naidu, R. (2017). Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: Material characterization and regeneration studies. Chemosphere, 186: 1006-1015.

9.     Liu, H., Chen, W., Liu, C., Liu, Y. and Dong, C. (2014). Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microporous and Mesoporous Materials, 194: 72-78.

10.  Frost, R. L. (1997). The structure of the kaolinite minerals - a FT-Raman study. Clay Minerals, 32(1): 65-77.

11.  Magdy, A., Fouad, Y. O., Abdel-Aziz, M. H. and Konsowa, A. H. (2017). Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. Journal of Industrial Engineering Chemistry, 56: 299-311.

12.  Hu, P. and Yang, H. (2013). Insight into the physicochemical aspects of kaolins with different morphologies. Applied Clay Science, 74: 58-65.

13.  Mirbagheri, N. S. and Sabbaghi, S. (2018). A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous Mesoporous Materials, 259: 134-141.

14.  Rashidi, F., Sarabi, R. S., Ghasemi, Z. and Seif, A. (2010). Kinetic, equilibrium and thermodynamic studies for the removal of lead(II) and copper(II) ions from aqueous solutions by nanocrystalline TiO2. Superlattices and Microstructures, 48 (6): 577-591.

15.  Jiang, M., Jin, X., Lu, X.-Q. and Chen, Z. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252(1-3): 33-39.

16.  Arias, F. and Sen, T. K. (2009). Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. Colloids Surfaces A: Physicochemical and Engineering Aspects, 348 (1-3): 100-108.

17.  Desta, M. B. (2013) Batch sorption experiments: Langmuir and Freundlich Isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics, 2013: 1-6.

18.  Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer, E. J. and Wang, R. (2013). Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica et Cosmochimica Acta, 117: 180-190.