Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 115 - 124
MAGNETIC
KAOLINITE COMPOSITE FOR LEAD REMOVAL IN AQUEOUS SOLUTION
(Komposit
Kaolinit Bermagnetik Untuk Penyingkiran Plumbum Dari Larutan Akueus)
Izzan
Salwana Izman, Siti Nor Atika Baharin, Ruhaida Rusmin*
School of Chemistry and
Environment, Faculty of Applied Sciences
Universiti Teknologi MARA,
Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan,
Malaysia
*Corresponding
author: ruhaida@uitm.edu.my
Received: 20 November 2019;
Accepted: 21 January 2020
Abstract
Magnetic kaolinite composite
was successfully synthesized using combination of kaolinite and iron oxide
through co-precipitation method. The synthesized kaolinite-iron oxide (Kao-IO)
and raw kaolinite (Kao) was characterized using X-ray diffractometer (XRD),
scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy
(FTIR). The Kao-IO composite was used to remove Pb2+ ions from
aqueous solution through adsorption studies under various experimental
conditions (e.g. pH, contact time, and initial Pb concentration). Meanwhile the
desorption studies of Pb loaded Kao-IO were performed with different desorbing
agents. The optimum experimental condition was achieved at pH 6, reaction time
of 120 min at initial concentration ranged from 10 to 70 mg/L. Kao-IO composite
has a higher adsorption capacity (30.93 mg g-1) compared to Kao
(25.04 mg g-1). Ethylenediaminetetraacetic acid (EDTA) was the best
desorbing agent with the highest desorption efficiency (39.18%). Overall,
Kao-IO composite demonstrated high potential as suitable adsorbent to treat Pb
contaminated water.
Keywords: kaolinite,
magnetic, iron oxide, lead, adsorption
Abstrak
Komposit kaolinit
bermagnetik telah berjaya disintesis menggunakan gabungan kaolinit dan ferum
oksida melalui kaedah pemendakan bersama. Kaolinit-ferum oksida (Kao-IO) dan
kaolinit asli (Kao) dicirikan menggunakan pembelauan sinar-X (XRD), Mikroskop
imbasan elektron (SEM) dan spektroskopi inframerah transformasi Fourier (FTIR).
Komposit Kao-IO digunakan untuk menyingkirkan ion Pb2+ dari larutan
akueus melalui kajian penjerapan dengan menggunakan pelbagai parameter
eksperimen (contohnya pH, masa tindak balas dan kepekatan awal Pb). Sementara
itu, kajian nyahjerapan Pb yang terjerap pada Kao-IO dilakukan menggunakan
pelbagai ejen nyahjerapan. Parameter eksperimen yang optima dicapai pada pH 6,
masa tindak balas 120 minit dan pada kepekatan awal antara 10 hingga 70 mg/L.
Komposit Kao-IO menunjukkan kapasiti penjerapan yang lebih tinggi (30.93 mg g-1)
berbanding dengan Kao (25.04 mg g-1). Asid etilinadiaminatetraasetik
(EDTA) merupakan ejen nyahjerapan yang terbaik dengan kecekapan nyahjerapan
tertinggi (39.18%). Secara keseluruhan, komposit Kao-IO menunjukkan potensi
yang tinggi sebagai penjerap yang sesuai untuk merawat air yang tercemar dengan
Pb.
Kata kunci: kaolinit, magnetik, ferum oksida, plumbum, penjerapan
References
1. Ali, R. M.,
Hamad, H. A., Hussein, M. M. and Malash, G. F. (2016). Potential of using green
adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics,
isotherm, thermodynamic, mechanism and economic analysis. Ecological
Engineering, 91: 317-332.
2. Landrigan, P. J., Fuller, R., Fisher, S.,
Suk, W. A., Sly, P., Chiles, T. C. and Bose-O’Reilly, S. (2019). Pollution and
children’s health. Science of the Total Environment, 650: 2389-2394.
3. Sari, A. and Tuzen, M. (2014). Cd(II)
adsorption from aqueous solution by raw and modified kaolinite. Applied Clay
Science, 88: 63-72.
4. Tokarčíková, M., Tokarský, J.,
Kutláková, K.M. and Seidlerová, J. (2017). Testing the stability of magnetic
iron oxides/kaolinite nanocomposite under various pH conditions. Journal of
Solid State Chemistry, 253: 329-335.
5. Gao, W., Zhao, S., Wu, H., Deligeer, W. and
Asuha, S. (2016). Direct acid activation of kaolinite and its effects on the
adsorption of methylene blue. Applied Clay Science, 126: 98-106.
6. Duarte-Silva, R., Villa-García, M. A.,
Rendueles, M. and Díaz, M. (2014). Structural, textural and protein adsorption
properties of kaolinite and surface modified kaolinite adsorbents. Applied
Clay Science, 90: 73-80.
7. Yuan, P., Fan, M., Yang, D., He, H., Liu,
D., Yuan, A., Zhu, J. X. and Chen, T. H. (2009). Montmorillonite-supported
magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from
aqueous solutions. Journal of Hazardous Materials, 166(2-3): 821-829.
8. Rusmin, R., Sarkar, B., Tsuzuki, T.,
Kawashima, N. and Naidu, R. (2017). Removal of lead from aqueous solution using
superparamagnetic palygorskite nanocomposite: Material characterization and
regeneration studies. Chemosphere, 186: 1006-1015.
9. Liu, H., Chen, W., Liu, C., Liu, Y. and
Dong, C. (2014). Magnetic mesoporous clay adsorbent: Preparation,
characterization and adsorption capacity for atrazine. Microporous and
Mesoporous Materials, 194: 72-78.
10. Frost, R. L. (1997). The structure of the
kaolinite minerals - a FT-Raman study. Clay Minerals, 32(1): 65-77.
11. Magdy, A., Fouad, Y. O., Abdel-Aziz, M. H. and
Konsowa, A. H. (2017). Synthesis and characterization of Fe3O4/kaolin
magnetic nanocomposite and its application in wastewater treatment. Journal
of Industrial Engineering Chemistry, 56: 299-311.
12. Hu, P. and Yang, H. (2013). Insight into the
physicochemical aspects of kaolins with different morphologies. Applied Clay
Science, 74: 58-65.
13. Mirbagheri, N. S. and Sabbaghi, S. (2018). A
natural kaolin/γ-Fe2O3 composite as an efficient
nano-adsorbent for removal of phenol from aqueous solutions. Microporous
Mesoporous Materials, 259: 134-141.
14. Rashidi, F., Sarabi, R. S., Ghasemi, Z. and
Seif, A. (2010). Kinetic, equilibrium and thermodynamic studies for the removal
of lead(II) and copper(II) ions from aqueous solutions by nanocrystalline TiO2.
Superlattices and Microstructures, 48 (6): 577-591.
15. Jiang, M., Jin, X., Lu, X.-Q. and Chen, Z.
(2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite
clay. Desalination, 252(1-3): 33-39.
16. Arias, F. and Sen, T. K. (2009). Removal of
zinc metal ion (Zn2+) from its aqueous solution by kaolin clay
mineral: A kinetic and equilibrium study. Colloids Surfaces A:
Physicochemical and Engineering Aspects, 348 (1-3): 100-108.
17. Desta, M. B. (2013) Batch sorption
experiments: Langmuir and Freundlich Isotherm studies for the adsorption of
textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal
of Thermodynamics, 2013: 1-6.
18. Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer,
E. J. and Wang, R. (2013). Acidity of edge surface sites of montmorillonite and
kaolinite. Geochimica et Cosmochimica Acta, 117: 180-190.