Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 107 - 114

 

 

 

 

MULTI-SPECTROSCOPIC AND CHEMOMETRICS ANALYSIS FOR FORENSIC DETERMINATION OF BLOOD SPECIES

 

(Multi-Spektroskopi dan Analisis Kemometrik untuk Penentuan Spesies Darah dalam Forensik)

 

Durga Devi Sandran1, Yusmazura Zakaria2, Noor Zuhartini Md Muslim1, Nik Fakhuruddin Nik Hassan1*

 

1Forensic Science Program, School of Health Sciences

2Biomedicine Program, School of Health Sciences

Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

 

*Corresponding author:  nikf@usm.my

 

 

Received: 20 November 2019; Accepted: 21 January 2020

 

 

Abstract

Blood trace is commonly found biological evidence at crime scenes. The main issues forensic investigators encounter upon retrieving blood samples is determining their origin. There is no statistical probability in the current examination methodology of potential blood evidence, and it is deemed subjective. Another method, involving DNA analysis, lengthy to perform and restricted due to its degradation and lack of samples. The main aim of this study was to evaluate the potential and suitability of tandem analysis using ATR-FTIR and UV/Vis spectroscopy as means for the characterization of blood samples in the context of forensic science. Conventional visual examination is insufficient to differentiate and classify spectra between blood from different animal species. Hence, to aid classification in each group, chemometrics analysis of the IR and UV/Vis spectral dataset was employed using the combined techniques of principal component analysis and linear discriminant analysis (PCA-LDA). PCA-LDA results demonstrated that blood spectra of various animal species differed in the compositions of blood protein i.e. amide A, I and II. The multivariate analysis based on PCA-LDA models indicated that ATR-FTIR and UV/Vis spectroscopy coupled with chemometrics provided excellent discrimination (94% correct classification) for the classification of blood samples from animal species. The non-destructive nature of vibrational and optical spectroscopic techniques and the success of chemometrics analysis demonstrated in this work have indeed offered a new dimension for the rapid identification of biomaterials of forensic relevance and essentially warrants further research.

 

Keywords:  spectroscopy, chemometrics, forensic, blood species

 

Abstrak

Kesan darah merupakan bahan bukti yang biasa dijumpai di tempat kejadian jenayah. Isu utama yang ditempuhi oleh para penyiasat forensik selepas menjumpai sampel darah ialah menentukan asal sumbernya. Kaedah baru iaitu pemeriksaan terhadap bahan bukti darah tidak memberi keputusan yang mempunyai kebarangkalian statistik serta ia dianggap sebagai subjektif. Kaedah lain iaitu analisis DNA, memakan masa yang agak lama untuk dijalankan dan terhad disebabkan degradasi dan kuantiti sampel yang kurang. Tujuan utama kajian ini adalah untuk menilai potensi dan kesesuaian spektroskopi ATR-FTIR dan UV-Vis sebagai satu cara untuk pencirian sampel darah dalam konteks sains forensik. Pemeriksaan visual konvensional tidak mencukupi untuk membezakan dan pengelasan spektrum antara darah spesies haiwan yang berlainan. Justeru, bagi membantu pengklasifikasian dalam setiap kumpulan, analisis kemometrik terhadap data spektrum IR dan UV-Vis telah diaplikasikan dengan menggunakan gabungan teknik analisis prinsip komponen dan analisis diskriminan linear (PCA-LDA). Hasil keputusan PCA-LDA menunjukkan bahawa spektrum darah pelbagai spesies haiwan mempunyai perbezaan dalam komposisi protein darah iaitu amida A, I dan II. Analisis multivariat berdasarkan model PCA-LDA menunjukkan bahawa gabungan spektroskopi ATR-FTIR dan UV-Vis bersamaan kemometrik menghasilkan diskriminasi yang cemerlang (94% klasifikasi yang tepat) bagi pengklasifikasian sampel darah spesies haiwan. Teknik getaran spektroskopi yang tidak memusnahkan sampel dan kejayaan analisis kemometrik yang didemonstrasikan di dalam kajian ini menawarkan dimensi baru bagi pengenalpastian bahan biologi dalam bidang forensik dengan lebih relevan dan memerlukan kajian yang lanjut.

 

Kata kunci:  spektroskopi, kemometrik, forensik, spesies darah

 

References

1.          An, J., Shin, K., Yang, W. and Lee, H. (2012). Body fluid identification in forensics. Journal of Biochemistry and Molecular Biology, 45(10): 545-553.

2.          Magalhães, T., Dinis-Oliveira, R., Silva, B., Corte-Real, F. and Nuno Vieira, D. (2015). Biological Evidence Management for DNA analysis in cases of sexual assault. The Scientific World Journal, 2015: 1-11.

3.          Kobilinsky, L. (2012). Forensic chemistry handbook. John Wiley & Sons, New Jersey: pp. 251-67.

4.          Forensic Resources of Indigent Defense Services (2019).  Serology - Blood and other Bodily Fluids. http://www.ncids.com/forensic/serology/serology.shtml. [Accessed: 14-May-2019].

5.          Edelman, G. J. (2014). Spectral analysis of blood stains at the crime scene. Thesis of Doctoral Degree, Universiteit van Amsterdam, Netherlands.

6.          Tobe, S. S., Watson, N. and Daéid, N. N. (2007). Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. Journal of Forensic Sciences, 52(1): 102-109.

7.          Gefrides, L. and Welch, K. (2010). The forensic laboratory handbook procedures and practice. Humana Press. New Jersey: pp. 15-50.

8.          Elkins, K. (2011). Rapid presumptive “Fingerprinting” of body fluids and materials by ATR-FTIR spectroscopy.  Journal of Forensic Sciences, 56(6): 1580-1587.

9.          Zapata, F., and Gregorio, I. (2016). Body fluids and spectroscopic techniques in forensics: A perfect match? Journal of Forensic Medicine, 1 (1): 1-7.

10.        Garidel P. and Schott H. (2006). Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations: Part 1, understanding infrared spectroscopy of proteins. BioProcess International, 4 (5): 40-46.

11.        Milczarek, J., Zadora, G., Palus, J. and Kościelniak, P. (2008). Forensic examination of car paints. https://milczarek.eu/wp-content/uploads/2012/10/IX.B-2-Milczarek.pdf. [Accessed: 17-May-2019].

12.        Zhang, W., Liu, S., Chen, R. and Liu, Y. (2016). Analysis of 52 automotive coating samples for forensic purposes with FTIR and Raman microscopy. Journal of Environmental Forensics, 17(1): 59-67.

13.        Itrić, K., Vukoje, M., & Banić, D. (2018). FT-IR Spectroscopy as a discrimination method for establishing authenticity of euro banknotes. Journal for Printing Science and Graphic Communications, 29(2): 27-30.

14.        Itrić, K. and Modrić, D. (2017). Banknote characterization using the FTIR spectroscopy. Technical Journal, 11(3): 83-88.

15.        Barton, P. (2011). A forensic investigation of single human hair fibres using FTIR-ATR spectroscopy and chemometrics. Thesis of Doctoral Degree, Queensland University of Technology, Australia.

16.        Kuwayama, K., Nariai, M., Miyaguchi, H., Iwata, Y., Kanamori, T. and Tsujikawa, K. (2018). Estimation of day of death using micro-segmental hair analysis based on drug use history: A case of lidocaine use as a marker. International Journal of Legal Medicine, 133(1): 117-122.

17.        Ameh, P. and Ozovehe, M. (2018). Forensic examination of inks extracted from printed documents using Fourier transform infrared spectroscopy. Edelweiss Applied Science and Technology, 2(1): 10-17.

18.        Sharif, M., Batool, M., Chand, S., Farooqi, Z., Tirmazi, S., and Athar, M. (2019). Forensic discrimination potential of blue, black, green, and red colored fountain pen inks commercially used in Pakistan, by UV/Visible spectroscopy, thin layer chromatography, and Fourier transform infrared spectroscopy. International Journal of Analytical Chemistry, 2009: 1-10.

19.        Quinn, A. and Elkins, K. (2016). The differentiation of menstrual from venous blood and other body fluids on various substrates by ATR-FTIR spectroscopy. Journal of Forensic Sciences, 62(1): 197-204.

20.        Wang, Q., Li, B., Lin, H., Zhang, Y., Zhang, J. and Wang, Z. (2017). UV–Vis and ATR–FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma. Plos One,12 (7): E0182161.

21.        Mclaughlin, G. and Lednev, I. K. (2014). A modified Raman multidimensional spectroscopic signature of blood to account for the effect of laser power. Forensic Science International, 240: 88-94.

22.        Mclaughlin, G., Doty, K. C. and Lednev, I. K. (2014). Raman spectroscopy of blood for species identification. Analytical Chemistry, 86(23): 11628-11633.

23.        Custers, D., Cauwenbergh, T., Bothy, J., Courselle, P. and Deconinck, E. (2015). ATR-FTIR spectroscopy and chemometrics: An interesting tool to discriminate and characterize counterfeit medicines. Journal of Pharmaceutical and Biomedical Analysis, 112: 181-189.

24.        Kamińska, A., Kowalska, A. and Waluk, J. (2016). ABO blood groups antigen–antibody interactions studied using SERS spectroscopy: Towards blood typing. Analytical Methods, 8(7): 1463-1472.

25.        Lin, H., Zhang, Y., Wang, Q., Li, B. and Wang, Z. (2017). Species identification of bloodstains by ATR-FTIR spectroscopy: The effects of bloodstain age and the deposition environment. International Journal of Legal Medicine, 132(3): 667-674.

26.        Cortes, S. (2010). Infrared Spectroscopy (IR) - Theory and Interpretation of IR spectra. https://personal.utdallas.edu/~scortes/ochem/OChem_Lab1/recit_notes/ir_presentation.pdf. [Accessed: 13-January-2020].

27.        Güler, G., Vorob'ev, M., Vogel, V. and Mäntele, W. (2016). Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161(5): 8-18.

28.        Hameed, B., Bhatt, C., Nagaraj, B. and Suresh, A. (2018). Chromatography as an efficient technique for the separation of diversified nanoparticles. Nanomaterials in Chromatography, 19(1): 503-518.

29.        Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, 1(1): 10815-10837.

30.        Mistek, E. and Lednev, I. (2015). Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy. Analytical and Bioanalytical Chemistry, 407(24): 7435-7442.

31.        De Wael, K., Lepot, L., Gason, F. and Gilbert, B. (2008). In search of blood-detection of minute particles using spectroscopic methods. Forensic Science International, 180(1): 37-42.

32.        Gunasekaran, S. and Uthra, D. (2008). Vibrational spectra and qualitative analysis of albendazole and mebendazole. Asian Journal of Chemistry, 20(8): 6310.

33.        Olsztynska-Janus, S., Szymborska-Malek, K., Gasior-Glogowska, M., Walski, T., Komorowska, M., Witkeiwicz, W., Pezowics, C., Kobielarz, M. and Szotek, S. (2012). Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta of Bioengineering & Biomechanics. 14(3): 101-115.

34.        Lu, G., Zou, J. and Wang, Y. (2012). Incremental complete LDA for face recognition. Pattern Recognition, 45(7): 2510-2521.

35.        Tan, Y., Yan, B., Xue, L., Li, Y., Luo, X. and Ji, P. (2019). Correction to: Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma. Lipids in Health and Disease, 18(1): 51.

36.        Efron, B. and Tibshirani, R. (1993). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1): 54-75.