Malaysian
Journal of Analytical Sciences Vol 24 No 1 (2020): 107 - 114
MULTI-SPECTROSCOPIC AND CHEMOMETRICS ANALYSIS FOR FORENSIC DETERMINATION
OF BLOOD SPECIES
(Multi-Spektroskopi dan Analisis Kemometrik untuk Penentuan Spesies Darah dalam Forensik)
Durga Devi
Sandran1, Yusmazura Zakaria2, Noor Zuhartini Md Muslim1,
Nik Fakhuruddin Nik Hassan1*
1Forensic Science Program, School
of Health Sciences
2Biomedicine Program, School
of Health Sciences
Universiti
Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
*Corresponding
author: nikf@usm.my
Received: 20 November 2019;
Accepted: 21 January 2020
Abstract
Blood trace is commonly found biological
evidence at crime scenes. The main issues forensic investigators encounter upon
retrieving blood samples is determining their origin.
There is no statistical probability in the current examination methodology of
potential blood evidence, and it is deemed subjective. Another method,
involving DNA analysis, lengthy to perform and restricted due to its
degradation and lack of samples. The main aim of this study was to evaluate the
potential and suitability of tandem analysis using ATR-FTIR and UV/Vis
spectroscopy as means for the characterization of blood samples in the context
of forensic science. Conventional visual examination is insufficient to
differentiate and classify spectra between blood from different animal species.
Hence, to aid classification in each group, chemometrics analysis of the IR and
UV/Vis spectral dataset was employed using the combined techniques of principal
component analysis and linear discriminant analysis (PCA-LDA). PCA-LDA results
demonstrated that blood spectra of various animal species differed in the
compositions of blood protein i.e. amide A, I and II. The multivariate analysis
based on PCA-LDA models indicated that ATR-FTIR and UV/Vis spectroscopy coupled
with chemometrics provided excellent discrimination (94% correct
classification) for the classification of blood samples from animal species.
The non-destructive nature of vibrational and optical spectroscopic techniques
and the success of chemometrics analysis demonstrated in this work have indeed
offered a new dimension for the rapid identification of biomaterials of
forensic relevance and essentially warrants further research.
Keywords: spectroscopy, chemometrics, forensic,
blood species
Abstrak
Kesan darah merupakan bahan bukti yang biasa dijumpai di tempat kejadian
jenayah. Isu utama yang ditempuhi oleh para penyiasat forensik selepas
menjumpai sampel darah ialah menentukan asal sumbernya. Kaedah baru iaitu
pemeriksaan terhadap bahan bukti darah tidak memberi keputusan yang mempunyai
kebarangkalian statistik serta ia dianggap sebagai subjektif. Kaedah lain iaitu
analisis DNA, memakan masa yang agak lama untuk dijalankan dan terhad
disebabkan degradasi dan kuantiti sampel yang kurang. Tujuan utama kajian ini
adalah untuk menilai potensi dan kesesuaian spektroskopi ATR-FTIR dan UV-Vis
sebagai satu cara untuk pencirian sampel darah dalam konteks sains forensik.
Pemeriksaan visual konvensional tidak mencukupi untuk membezakan dan pengelasan
spektrum antara darah spesies haiwan yang berlainan. Justeru, bagi membantu
pengklasifikasian dalam setiap kumpulan, analisis kemometrik terhadap data
spektrum IR dan UV-Vis telah diaplikasikan dengan menggunakan gabungan teknik
analisis prinsip komponen dan analisis diskriminan linear (PCA-LDA). Hasil
keputusan PCA-LDA menunjukkan bahawa spektrum darah pelbagai spesies haiwan
mempunyai perbezaan dalam komposisi protein darah iaitu amida A, I dan II.
Analisis multivariat berdasarkan model PCA-LDA menunjukkan bahawa gabungan
spektroskopi ATR-FTIR dan UV-Vis bersamaan kemometrik menghasilkan diskriminasi
yang cemerlang (94% klasifikasi yang tepat) bagi pengklasifikasian sampel darah
spesies haiwan. Teknik getaran spektroskopi yang tidak memusnahkan sampel dan
kejayaan analisis kemometrik yang didemonstrasikan di dalam kajian ini
menawarkan dimensi baru bagi pengenalpastian bahan biologi dalam bidang
forensik dengan lebih relevan dan memerlukan kajian yang lanjut.
Kata
kunci: spektroskopi,
kemometrik, forensik, spesies darah
References
1.
An, J., Shin, K., Yang, W. and Lee, H. (2012). Body
fluid identification in forensics. Journal of Biochemistry and
Molecular Biology, 45(10): 545-553.
2.
Magalhães, T.,
Dinis-Oliveira, R., Silva, B., Corte-Real, F. and Nuno Vieira, D. (2015).
Biological Evidence Management for DNA analysis in cases of sexual
assault. The Scientific World Journal, 2015: 1-11.
3.
Kobilinsky, L.
(2012). Forensic chemistry handbook. John Wiley & Sons, New Jersey:
pp. 251-67.
4.
Forensic Resources of
Indigent Defense Services (2019). Serology - Blood and other Bodily Fluids.
http://www.ncids.com/forensic/serology/serology.shtml. [Accessed: 14-May-2019].
5.
Edelman, G. J. (2014). Spectral analysis of blood stains at the crime scene. Thesis
of Doctoral Degree, Universiteit van Amsterdam,
Netherlands.
6.
Tobe, S. S., Watson, N.
and Daéid, N. N. (2007). Evaluation of six presumptive tests for blood, their
specificity, sensitivity, and effect on high molecular-weight DNA. Journal
of Forensic Sciences, 52(1): 102-109.
7.
Gefrides, L. and Welch,
K. (2010). The forensic laboratory handbook procedures and practice.
Humana Press. New Jersey: pp. 15-50.
8.
Elkins, K. (2011).
Rapid presumptive “Fingerprinting” of body fluids and materials by ATR-FTIR
spectroscopy. Journal of Forensic Sciences, 56(6): 1580-1587.
9.
Zapata, F., and
Gregorio, I. (2016). Body fluids and spectroscopic techniques in forensics: A
perfect match? Journal of Forensic Medicine, 1 (1): 1-7.
10.
Garidel P. and Schott H. (2006).
Fourier-transform midinfrared spectroscopy for analysis and screening of liquid
protein formulations: Part 1, understanding infrared spectroscopy of proteins. BioProcess
International, 4 (5): 40-46.
11.
Milczarek, J., Zadora,
G., Palus, J. and Kościelniak, P. (2008). Forensic examination of car
paints. https://milczarek.eu/wp-content/uploads/2012/10/IX.B-2-Milczarek.pdf. [Accessed: 17-May-2019].
12.
Zhang, W., Liu, S.,
Chen, R. and Liu, Y. (2016). Analysis of 52 automotive coating samples for
forensic purposes with FTIR and Raman microscopy. Journal of
Environmental Forensics, 17(1): 59-67.
13.
Itrić, K., Vukoje,
M., & Banić, D. (2018). FT-IR Spectroscopy as a discrimination method
for establishing authenticity of euro banknotes. Journal for Printing
Science and Graphic Communications, 29(2): 27-30.
14.
Itrić, K. and
Modrić, D. (2017). Banknote characterization using the FTIR spectroscopy. Technical
Journal, 11(3): 83-88.
15.
Barton, P.
(2011). A forensic investigation of single human hair fibres using
FTIR-ATR spectroscopy and chemometrics. Thesis of Doctoral Degree, Queensland
University of Technology, Australia.
16.
Kuwayama, K., Nariai,
M., Miyaguchi, H., Iwata, Y., Kanamori, T. and Tsujikawa, K. (2018). Estimation
of day of death using micro-segmental hair analysis based on drug use history:
A case of lidocaine use as a marker. International Journal of Legal
Medicine, 133(1): 117-122.
17.
Ameh, P. and Ozovehe,
M. (2018). Forensic examination of inks extracted from printed documents using
Fourier transform infrared spectroscopy. Edelweiss Applied Science and
Technology, 2(1): 10-17.
18.
Sharif, M., Batool, M.,
Chand, S., Farooqi, Z., Tirmazi, S., and Athar, M. (2019). Forensic
discrimination potential of blue, black, green, and red colored fountain pen
inks commercially used in Pakistan, by UV/Visible spectroscopy, thin layer
chromatography, and Fourier transform infrared spectroscopy. International
Journal of Analytical Chemistry, 2009: 1-10.
19.
Quinn, A. and Elkins,
K. (2016). The differentiation of menstrual from venous blood and other body
fluids on various substrates by ATR-FTIR spectroscopy. Journal of
Forensic Sciences, 62(1): 197-204.
20.
Wang, Q., Li, B., Lin,
H., Zhang, Y., Zhang, J. and Wang, Z. (2017). UV–Vis and ATR–FTIR spectroscopic
investigations of postmortem interval based on the changes in rabbit
plasma. Plos One,12 (7): E0182161.
21.
Mclaughlin, G. and
Lednev, I. K. (2014). A modified Raman multidimensional spectroscopic signature
of blood to account for the effect of laser power. Forensic
Science International, 240:
88-94.
22.
Mclaughlin, G., Doty,
K. C. and Lednev, I. K. (2014). Raman spectroscopy of blood for species
identification. Analytical Chemistry, 86(23): 11628-11633.
23.
Custers, D.,
Cauwenbergh, T., Bothy, J., Courselle, P. and Deconinck, E. (2015). ATR-FTIR
spectroscopy and chemometrics: An interesting tool to discriminate and
characterize counterfeit medicines. Journal of
Pharmaceutical and Biomedical Analysis, 112: 181-189.
24.
Kamińska, A.,
Kowalska, A. and Waluk, J. (2016). ABO blood groups antigen–antibody
interactions studied using SERS spectroscopy: Towards blood typing. Analytical
Methods, 8(7): 1463-1472.
25.
Lin, H., Zhang, Y.,
Wang, Q., Li, B. and Wang, Z. (2017). Species identification of bloodstains by
ATR-FTIR spectroscopy: The effects of bloodstain age and the deposition
environment. International Journal of Legal Medicine,
132(3): 667-674.
26.
Cortes, S. (2010).
Infrared Spectroscopy (IR) - Theory and Interpretation of IR spectra.
https://personal.utdallas.edu/~scortes/ochem/OChem_Lab1/recit_notes/ir_presentation.pdf.
[Accessed: 13-January-2020].
27.
Güler, G., Vorob'ev,
M., Vogel, V. and Mäntele, W. (2016). Proteolytically-induced changes of
secondary structural protein conformation of bovine serum albumin monitored by
Fourier transform infrared (FT-IR) and UV-circular dichroism
spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 161(5): 8-18.
28.
Hameed, B., Bhatt, C.,
Nagaraj, B. and Suresh, A. (2018). Chromatography as an efficient technique for
the separation of diversified nanoparticles. Nanomaterials in Chromatography,
19(1): 503-518.
29.
Coates, J. (2006).
Interpretation of infrared spectra, a practical approach. Encyclopedia
of Analytical Chemistry, 1(1): 10815-10837.
30.
Mistek, E. and Lednev, I. (2015).
Identification of species’ blood by attenuated total reflection (ATR) Fourier
transform infrared (FT-IR) spectroscopy. Analytical and Bioanalytical
Chemistry, 407(24): 7435-7442.
31.
De Wael, K., Lepot, L., Gason, F. and
Gilbert, B. (2008). In search of blood-detection of minute particles using
spectroscopic methods. Forensic Science International, 180(1): 37-42.
32.
Gunasekaran, S. and Uthra, D. (2008).
Vibrational spectra and qualitative analysis of albendazole and mebendazole. Asian
Journal of Chemistry, 20(8): 6310.
33.
Olsztynska-Janus, S., Szymborska-Malek,
K., Gasior-Glogowska, M., Walski, T., Komorowska, M., Witkeiwicz, W., Pezowics,
C., Kobielarz, M. and Szotek, S. (2012). Spectroscopic techniques in the study
of human tissues and their components. Part I: IR spectroscopy. Acta of
Bioengineering & Biomechanics. 14(3): 101-115.
34.
Lu, G., Zou, J. and
Wang, Y. (2012). Incremental complete LDA for face recognition. Pattern
Recognition, 45(7): 2510-2521.
35.
Tan, Y., Yan, B., Xue,
L., Li, Y., Luo, X. and Ji, P. (2019). Correction to: Surface-enhanced Raman
spectroscopy of blood serum based on gold nanoparticles for the diagnosis of
the oral squamous cell carcinoma. Lipids in Health and Disease, 18(1):
51.
36.
Efron, B. and
Tibshirani, R. (1993). Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy. Statistical
Science, 1(1): 54-75.