Malaysian Journal of Analytical Sciences Vol 24 No 1 (2020): 97 - 106

 

 

 

 

ELECTROCHEMICAL DETERMINATION OF DOPAMINE AND URIC ACID IN BLOOD SERUM USING ANIONIC SURFACTANTS AT CARBON PASTE ELECTRODES

 

(Penentuan Dopamin dan Asid Urik dalam Serum Darah Secara Elektrokimia Menggunakan Surfaktan Anionik pada Perekat Elektrod Karbon)

 

Liridon Berisha1, Egzontina Shabani1, Arsim Maloku1*, Granit Jashari2, Tahir Arbneshi1

 

1Department of Chemistry, Faculty of Mathematical and Natural Sciences,

University of Prishtina, 10000 Prishtinë, Kosovo

2Department of Analytical Chemistry, Faculty of Chemical Technology,

University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

 

*Corresponding author:  arsim.maloku@uni-pr.edu

 

 

Received: 20 October 2019; Accepted: 9 December 2019

 

 

Abstract

A selective and sensitive method was developed for the simultaneous electrochemical determination of dopamine and uric acid by using a sodium dodecylbenzenesulfonate (SDBS) and sodium dodecyl sulfate (SDS) as a surface modifier of carbon paste electrodes (CPEs). At lower concentration of SDS and SDBS they form a negatively charged monolayer on CPE surface because of surfactants’ hydrophobic chain interaction with paraffin of CPE. Optimized concentration of surfactants was 2 mM for SDS and 1 mM for SDBS in phosphate buffer solution (0.1 M, pH 7 and pH 6, respectively). Compared with plain CPE, CPE modified with SDS (CPE-SDS) and CPE modified with SDBS (CPE-SDBS) have shown the improved electrochemical response of dopamine (DA) at 0.230 V and uric acid (UA) at 0.345 V due to electrostatic interactions between positively charged analytes and surface negatively charged of SDBS and SDS. Under optimal experimental conditions, the designed electrodes exhibited a wide range of linear response to DA from 0.53 μM to 31.6 μM and UA from 5.95 μM to 118.97 μM. The detection limits for DA and UA were found to be 0.26 and 1.10 µM with CPE-SDS, whilst 0.22 and 0.38 µM with CPE-SDBS. The CPE-SDBS and CPE-SDS showed good reproducibility, repeatability, stability and high selectivity for determination of DA and UA in blood serum samples.

 

Keywords:  dopamine, uric acid, carbon paste electrode, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate

 

Abstrak

Kaedah sensitif dan selektif telah dibangun untuk penentuan serentak dopamin dan asid urik menggunakan sodium dodekilbenzenasolfonat (SDBS) dan sodium dodekil sulfat (SDS) sebagai perekat elektrod karbon yang diubah permukaan.  Pada kepekatan rendah SDS dan SDBS membentuk cas negatif lapisan mono pada permukaan CPE disebabkan interaksi rantaian hidrofobik dengan paraffin CPE. Kepekatan optimum surfaktan ialah 2 mM SDS dan 1 mM SDBS dalam larutan penimbal fosfat (masing-masing 0.1 M, pH 7 dan pH 6). Berbanding CPE kosong, CPE yang terubahsuai dengan SDS (CPE-SDS) dan CPE terubahsuai dengan SDBS (CPE-SDBS) telah menunjukkan peningkatan respons elektrokimia bagi dopamin (DA) pada 0.230 V dan asid urik (UA) pada 0.345 V disebabkan oleh interaksi elektrostatik di antara cas positif analit dan cas negatif permukaan SDBS dan SDS. Pada keadaan optimum, elektrod yang dibangun menghasilkan julat respons kelinearan yang besar terhadap DA dari 0.53 μM to 31.6 μM hingga UA dari 5.95 μM hingga 118.97 μM. Had pengesanan DA dan UA didapati pada 0.26 dan 1.10 µM bagi CPE-SDS, manakala 0.22 and 0.38 µM bagi CPE- SDBS. CPE-SDBS dan CPE-SDS telah menghasilkan kebolehhasilan, kebolehulangan, kestabilan yang baik dan kepilihan yang tinggi bagi penentuan DA dan UA di dalam sampel serum darah.

 

Kata kunci:  dopamin, asid urik, perekat elektrod karbon, sodium dodekil sulfat, sodium dodekilbenzenasolfonat

 

References

1.       Zhang, J., Song, X., Ma, S., Wang, X., Wang, W. and Chen, Z. (2017). A novel sodium dodecyl benzene sulfonate modified expanded graphite paste electrode for sensitive and selective determination of dopamine in the presence of ascorbic acid and uric acid. Journal of Electroanalytical Chemistry, 795: 10-16.

2.       Zhang, K., Chen, X., Li, Z., Wang, Y., Sun, S., Wang, L., Guo, T., Zhang, D., Xue, Z., Zhou, X. and Lu, X. (2018). Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid. Talanta, 178: 315-323.

3.       Sharath, S., Swamy, B. E. K., Chandra, U., Manjunatha, J. G. and Sherigara, B. S. (2009). Simultaneous determination of dopamine, uric acid and ascorbic acid with CTAB modified carbon paste electrode. International Journal of Electrochemical Science, 4: 592-601.

4.       Yang, L., Liu, D., Huang, J. and You, T. (2014). Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors and Actuators, B: Chemical, 193: 166-172.

5.       Zhang, Y., Lei, W., Xu, Y., Xia, X. and Hao, Q. (2016). Simultaneous detection of dopamine and uric acid using a poly (L -lysine)/graphene oxide modified electrode. Nanomaterials, 178: 1-17.

6.       Wu, D., Li, Y., Zhang, Y., Wang, P., Wei, Q. and Du, B. (2014). Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino group functionalized mesoporous Fe3O4@graphene sheets. Electrochimica Acta, 116: 244-249.

7.       Wang, H. Y., Sun, Y. and Tang, B. (2002). Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta, 57(5): 899-907.

8.       Yu, J., Wang, S., Ge, L. and Ge, S. (2011). A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosensors and Bioelectronics, 26(7): 3284-3289.

9.       Guo, L., Zhang, Y. and Li, Q. (2009). Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III). Analytical Sciences, 25 (12): 1451-1455.

10.    Zhao, H.-X., Mu, H., Bai, Y.-H., Yu, H. and Hu, Y.-M. (2011). A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. Journal of Pharmaceutical Analysis, 1(3): 208-212.

11.    Han, D., Han, T., Shan, C., Ivaska, A. and Niu, L. (2010). Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis, 22(17–18): 2001-2008.

12.    Kang, G. and Lin, X. (2006). RNA modified electrodes for simultaneous determination of dopamine and uric acid in the presence of high amounts of ascorbic acid. Electroanalysis, 18(24): 2458-2466.

13.    Khudaish, E. A., Al-Nofli, F., Rather, J. A., Al-Hinaai, M., Laxman, K., Kyaw, H. H. and Al-Harthy, S. (2016). Sensitive and selective dopamine sensor based on novel conjugated polymer decorated with gold nanoparticles. Journal of Electroanalytical Chemistry, 761: 80-88.

14.    Xu, T.-Q., Zhang, Q.-L., Zheng, J.-N., Lv, Z.-Y., Wei, J., Wang, A.-J. and Feng, J.-J. (2014). Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochimica Acta, 115: 109-115.

15.    Wang, G., Sun, J., Zhang, W., Jiao, S. and Fang, B. (2009). Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchimica Acta, 164(3–4): 357-362.

16.    Sun, H., Chao, J., Zuo, X., Su, S., Liu, X., Yuwen, L., Fan, C. and Wang, L. (2014). Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 4(52): 27625-27629.

17.    Wang, S., Zhang, W., Zhong, X., Chai, Y. and Yuan, R. (2015). Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Analytical Methods, 7(4): 1471-1477.

18.    Zheng, X., Zhou, X., Ji, X., Lin, R. and Lin, W. (2013). Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode. Sensors and Actuators, B: Chemical, 178: 359-365.

19.    Njagi, J., Chernov, M. M., Leiter, J. C. and Andreescu, S. (2010). Amperometric detection of dopamine in vivo with an enzyme-based carbon fiber microbiosensor. Analytical Chemistry, 82(3): 989-996.

20.    Zheng, J. and Zhou, X. (2007). Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry, 70 (2): 408-415.

21.    Dang, X., Hu, C., Wei, Y., Chen, W. and Hu, S. (2004). Sensitivity improvement of the oxidation of tetracycline at acetylene black electrode in the presence of sodium dodecyl sulfate. Electroanalysis, 16 (23): 1949-1955.

22.    Thomas, T., Mascarenhas, R. J., D’Souza, O. J., Detriche, S., Mekhalif, Z. and Martis, P. (2014). Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine. Talanta, 125: 352-360.

23.    Manjunatha, J. G., Kumara Swamy, B. E., Gilbert, O., Mamatha, G. P. and Sherigara, B. S. (2010). Sensitive voltammetric determination of dopamine at salicylic acid and TX-100, SDS, CTAB modified carbon paste electrode. International Journal of Electrochemical Science, 5(5): 682-695.

24.    Teradale, A. B., Lamani, S. D., Ganesh, P. S., Kumara Swamy, B. E. and Das, S. N. (2017). CTAB immobilized carbon paste electrode for the determination of mesalazine: A cyclic voltammetric method. Sensing and Bio-Sensing Research, 15: 53-59.

25.    Sancy, M., Francisco Silva, J., Pavez, J. and Zagal, J. H. (2013). Simultaneous electrochemical detection of dopamine, ascorbic acid and uric acid using copper-phthalocyanine functionalized MWCNTs. Journal of the Chilean Chemical Society, 58(4): 2117-2121.