Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 938 - 949

DOI: 10.17576/mjas-2019-2306-03

 

 

 

Preparation and CharacteriSation of Hydroxyapatite Extracted From Fish Scale Waste For The Removal Of Gallic Acid As Inhibitor In Biofuel Production

 

(Penyediaan dan Perincian Hidroksiapatit yang Diekstrak daripada Sisa Sisik Ikan untuk Penyingkiran Asid Galik sebagai Perencat dalam Pemprosesan Bahan Api Bio)

 

Nurul Fakhriah Ismail1, Sofiah Hamzah1*, Nurul Ashraf Razali1, Wan Mohd Hafizuddin Wan Yussof2, Nora�aini Ali1, Abdul Wahab Mohammad3

 

1Faculty of Ocean Engineering Technology and Informatics,

Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia

2Faculty of Chemical and Natural Resources Engineering,
Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

3Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: sofiah@umt.edu.my

 

 

Received: 13 December 2018; Accepted: 20 October 2019

 

 

Abstract

Acid pre-treatment of lignocellulosic waste to produce fermentable sugar for the production of bioethanol and biofuel has created phenolic compounds, aliphatic acid, and furfural. These compounds are recognised as inhibitors in the fermentation process, which could reduce the final product yield. This is a preliminary study that is focused on the potential of hydroxyapatite (HAp) extracted from fish scale for the removal of phenolic compounds (gallic acid was used as a model solution). HAp was extracted via a modified enzymatic hydrolysis at various temperatures (500 oC, 600 �C, 700 �C, 800 �C, 900 �C, 1,000 �C) and calcined for 4 hours. The extracted HAp was characterised using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Batch adsorption was conducted to select the best adsorbent and to study the effects of initial concentration, time, dosage, and temperature. The results showed gallic acid removal of 78.9% in 100 mg/L of initial gallic acid concentration, which were adhered by HAp800. This adsorption process fit the Freundlich isotherm (r2 = 0.9951) better than to Langmuir isotherm. The kinetics of adsorption most fitted the pseudo-second order (0.996).

 

Keywords: batch adsorption, Langmuir, Freundlich, first-order, Pseudo-second order

 

Abstrak

Pra-rawatan asid terhadap sisa lignoselulosa untuk menghasilkan gula boleh tapai dalam penghasilan bioetanol dan bahan api bio telah menghasilkan sebatian fenolik, asid alifatik, dan furfural. Sebatian ini dikenal pasti sebagai perencat dalam proses penapaian yang akan mengurangkan hasil akhir produk. Kajian awal ini adalah bertujuan untuk mengkaji potensi hidroksiapatit (HAp) yang diekstrak daripada sisik ikan untuk menyingkirkan sebatian fenolik (asid galik digunakan sebagai model larutan). HAp diekstrak melalui proses hidrolisis enzimatik yang diubahsuai pada suhu yang berbeza (500 �C, 600 �C, 700 �C, 800 �C, 900 �C, 1000 �C) dan dikalsin selama 4 jam. HAp yang diekstrak telah dianalisis menggunakan spektroskopi inframerah transformasi Fourier (FTIR), pembiasan sinar-X (XRD), dan mikroskop elektron pengimbas (SEM). Penjerapan kelompok dilakukan untuk memilih penjerap terbaik dan untuk mengkaji kesan kepekatan awal sampel, masa penjerapan, dos penjerap, dan suhu penjerapan. Hasil kajian menunjukkan sebanyak 78.9% asid galik berjaya disingkirkan dalam 100 mg/L kepekatan awal asid galik yang dijerap oleh HAp800. Proses penjerapan ini isoterma dan kinetik HAp800 dan HAp/Chi berpadanan lebih baik dengan isoterma Freundlich (r2 = 0.9951) berbanding dengan isoterma Langmuir. Kinetik penjerapan lebih berpadanan dengan pseudo tertib kedua (0.996).

 

Kata kunci: penjerapan kelompok, Langmuir, Freundlich, kinetik tertib pertama, kinetik pseudo tertib kedua

 

References

1.      Prasad, R. K., Chatterjee, S., Mazumder, P. B., Gupta, S. K., Sharma, S., Vairale, M. G. and Gupta, D. K. (2019). Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere, 231: 588�606.

2.      Lee, J. W., Trinh, L. T. P. and Lee, H. J. (2014). Removal of inhibitors from a hydrolysate of lignocellulosic biomass using electrodialysis. Separation and Purification Technology, 122: 242�247.

3.      Lin, R., Cheng, J., Ding, L., Song, W., Zhou, J. and Cen, K. (2015). Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresource Technology, 196: 250�255.

4.      Kim, Y., Ximenes, E., Mosier, N. S. and Ladisch, M. R. (2011). Enzyme and microbial technology soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48: 408�415.

5.      Palmqvist, E. and Hahn-Hargedal, B. (2000). Fermentation of lignocellulosic hydrolysates I : Inhibition and detoxification. Bioresource Technology, 74(1): 17�24.

6.      Han, F., Xu, C., Sun, W. Z., Yu, S. T. and Xian, M. (2017). Effective removal of salicylic and gallic acids from single component and impurity-containing systems using an isatin-modified adsorption resin. RSC Advances, 7: 23164�23175.

7.      Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M. P. and Khairnar, R. S. (2010). Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 168(1): 224�230.

8.      Piccirillo, C., Pullar, R. C., Tobaldi, D. M., L. Castro, P. M. and E. Pintado, M. M. (2014). Hydroxyapatite and chloroapatite derived from sardine by-products. Ceramics International, 40: 13231�13240.

9.      Elliott, J. C., Wilson, R. M. and Dowker, S. E. P. (2002). Apatite structures. Advances in X-Ray Analysis, 45: 172�181.

10.  Nguyen, V. C. and Pho, Q. H. (2014). Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive blue 19 and Ni2+ ions. The Scientific World Journal, 2014: 1�9.

11.  Zou, X., Zhao, Y. and Zhang, Z. (2019). Preparation of hydroxyapatite nanostructures with different morphologies and adsorption behavior on seven heavy metals ions. Journal of Contaminant Hydrology, 226: 103538.

12.  Bouiahya, K., Es-saidi, I., El Bekkali, C., Laghzizil, A., Robert, D., Nunzi, J. M. and Saoiabi, A. (2019). Synthesis and properties of alumina-hydroxyapatite composites from natural phosphate for phenol removal from water. Colloids and Interface Science Communications, 31: 100188.

13.  Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S. and Chanthai, S. (2013). Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chemical Engineering Journal, 215�216: 522�532.

14.  Huang, Y., Hsiao, P. and Chai, H. (2011). Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics International, 37(6): 1825�1831.

15.  Parhi, P., Ramanan, A. and Ray, A. (2006). Hydrothermal synthesis of nanocrystalline powders of alkaline-earth hydroxyapatites, A10(PO4)6OH)2 (A=Ca, Sr and Ba). Journal of Material Sciences, 41: 1455�1458.

16.  Lin, K., Pan, J., Chen, Y., Cheng, R. and Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 161(1): 231�240.

17.  B Cagnon, B., Chedeville, O., Cherrier, J. F., Caqueret, V. and Porte, C. (2011). Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: Comparison to the raw material. Journal of the Taiwan Institute of Chemical Engineers, 42: 996�1003.

18.  Anbia, M., Mohammadi, N. and Mohammadi, K. (2010). Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media. Journal of Hazardous Materials, 176, 965�972.

19.  Rengaraj, S., Yeon, J., Kim, Y., Jung, Y., Ha, Y. and Kim, W. (2007). Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143: 469�477.

20.  Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of Nanostructure in Chemistry, 3: 55.

21.  Abdelwahab, O. and Amin, N. K. (2013). Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies. Egyptian Journal of Aquatic Research, 39: 215�223.

22.  Azmi, N. A. I., Zainudin, N. F., Ali, U. F. M. and Senusi, F. (2015). Adsorption kinetics on basic red 46 removal using Cerbera odollam activated carbon. Journal of Engineering Science and Technology, 10: 82�91.

23.  Smiciklas, I., Dimović, I. and Mitrić, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12): 2267�2274.

24.  Salimi, M. N., Bridson, R. H., Grover, L. M. and Leeke, G. A. (2012). Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technology, 218: 109�118.

25.  Yusof, S. R. M., Zahri, N. A. M., Koay, Y. S., Nourouzi, M. M., Chuah, L. A. and Choong, T. S. Y. (2015). Removal of fluoride using modified kenaf as adsorbent. Journal of Engineering Science and Technology, 10: 11�22.

26.  Anbia, M. and Ghaffari, A. (2009). Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. Applied Surface Science, 255: 9487�9492.

 

 




Previous                    Content                    Next