Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 938 - 949
DOI:
10.17576/mjas-2019-2306-03
Preparation
and CharacteriSation of Hydroxyapatite Extracted From Fish Scale Waste For The
Removal Of Gallic Acid As Inhibitor In Biofuel Production
(Penyediaan
dan Perincian Hidroksiapatit yang Diekstrak daripada Sisa Sisik Ikan untuk
Penyingkiran Asid Galik sebagai Perencat dalam Pemprosesan Bahan Api Bio)
Nurul
Fakhriah Ismail1, Sofiah Hamzah1*, Nurul Ashraf Razali1,
Wan Mohd Hafizuddin Wan Yussof2, Nora�aini
Ali1, Abdul Wahab Mohammad3
1Faculty of Ocean Engineering
Technology and Informatics,
Universiti Malaysia Terengganu, 21300 Kuala
Nerus, Terengganu, Malaysia
2Faculty of Chemical and Natural Resources
Engineering,
Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
3Faculty of Engineering and Built
Environment,
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
*Corresponding author: �sofiah@umt.edu.my
Received: 13 December 2018;
Accepted: 20 October 2019
Abstract
Acid
pre-treatment of lignocellulosic waste to produce fermentable sugar for the
production of bioethanol and biofuel has created phenolic compounds, aliphatic
acid, and furfural. These compounds are recognised as inhibitors in the fermentation
process, which could reduce the final product yield. This is a preliminary
study that is focused on the potential of hydroxyapatite (HAp) extracted from
fish scale for the removal of phenolic compounds (gallic acid was used as a
model solution). HAp was extracted via
a modified enzymatic hydrolysis at various temperatures (500 oC, 600 �C, 700
�C, 800 �C, 900 �C, 1,000 �C) and calcined for 4 hours. The extracted HAp was
characterised using Fourier transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), and scanning electron microscope (SEM). Batch adsorption was
conducted to select the best adsorbent and to study the effects of initial
concentration, time, dosage, and temperature. The results showed gallic acid
removal of 78.9% in 100 mg/L of initial gallic acid concentration, which were
adhered by HAp800. This adsorption process fit the Freundlich isotherm (r2
= 0.9951) better than to Langmuir isotherm. The kinetics of adsorption most
fitted the pseudo-second order (0.996).
Keywords: �batch adsorption, Langmuir, Freundlich,
first-order, Pseudo-second order
Abstrak
Pra-rawatan asid terhadap
sisa lignoselulosa untuk menghasilkan gula boleh tapai dalam penghasilan
bioetanol dan bahan api bio telah menghasilkan sebatian fenolik, asid alifatik,
dan furfural. Sebatian ini dikenal pasti sebagai perencat dalam proses
penapaian yang akan mengurangkan hasil akhir produk. Kajian awal ini adalah
bertujuan untuk mengkaji potensi hidroksiapatit (HAp) yang diekstrak daripada
sisik ikan untuk menyingkirkan sebatian fenolik (asid galik digunakan sebagai
model larutan). HAp diekstrak melalui proses hidrolisis enzimatik yang
diubahsuai pada suhu yang berbeza (500 �C,
600 �C, 700 �C, 800 �C, 900 �C, 1000
�C) dan dikalsin selama 4 jam.
HAp yang diekstrak telah dianalisis menggunakan spektroskopi inframerah
transformasi Fourier (FTIR), pembiasan sinar-X (XRD), dan mikroskop elektron
pengimbas (SEM). Penjerapan kelompok dilakukan untuk memilih penjerap terbaik
dan untuk mengkaji kesan kepekatan awal sampel, masa penjerapan, dos penjerap,
dan suhu penjerapan. Hasil kajian menunjukkan sebanyak 78.9% asid galik berjaya
disingkirkan dalam 100 mg/L kepekatan awal asid galik yang dijerap oleh HAp800.
Proses penjerapan ini isoterma dan kinetik HAp800 dan HAp/Chi berpadanan lebih
baik dengan isoterma Freundlich (r2 = 0.9951) berbanding dengan
isoterma Langmuir. Kinetik penjerapan lebih berpadanan dengan pseudo tertib kedua
(0.996).
Kata kunci: �penjerapan kelompok, Langmuir, Freundlich,
kinetik tertib pertama, kinetik pseudo tertib kedua
References
1. Prasad, R. K., Chatterjee, S., Mazumder, P. B., Gupta,
S. K., Sharma, S., Vairale, M. G. and Gupta, D. K. (2019). Bioethanol
production from waste lignocelluloses: A review on microbial degradation
potential. Chemosphere, 231: 588�606.
2. Lee, J. W., Trinh, L. T. P. and Lee, H. J. (2014).
Removal of inhibitors from a hydrolysate of lignocellulosic biomass using
electrodialysis. Separation and
Purification Technology, 122: 242�247.
3. Lin, R., Cheng, J., Ding, L., Song, W., Zhou, J. and Cen,
K. (2015). Inhibitory effects of furan derivatives and phenolic compounds on
dark hydrogen fermentation. Bioresource
Technology, 196: 250�255.
4. Kim, Y., Ximenes, E., Mosier, N. S. and Ladisch, M. R.
(2011). Enzyme and microbial technology soluble inhibitors/deactivators of
cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48: 408�415.
5. Palmqvist, E. and Hahn-Hargedal, B. (2000).
Fermentation of lignocellulosic hydrolysates I : Inhibition and
detoxification. Bioresource Technology,
74(1): 17�24.
6. Han, F., Xu, C., Sun, W. Z., Yu, S. T. and Xian, M.
(2017). Effective removal of salicylic and gallic acids from single component
and impurity-containing systems using an isatin-modified adsorption resin. RSC Advances, 7: 23164�23175.
7. Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M.
P. and Khairnar, R. S. (2010). Study of nanobiomaterial hydroxyapatite in
simulated body fluid: Formation and growth of apatite. Materials Science and Engineering B: Solid-State Materials for Advanced
Technology, 168(1): 224�230.
8. Piccirillo, C., Pullar, R. C., Tobaldi, D. M., L.
Castro, P. M. and E. Pintado, M. M. (2014). Hydroxyapatite and chloroapatite
derived from sardine by-products. Ceramics
International, 40: 13231�13240.
9. Elliott, J. C., Wilson, R. M. and Dowker, S. E. P.
(2002). Apatite structures. Advances in
X-Ray Analysis, 45: 172�181.
10. Nguyen, V. C. and Pho, Q. H. (2014). Preparation of
chitosan coated magnetic hydroxyapatite nanoparticles and application for
adsorption of reactive blue 19 and Ni2+ ions. The Scientific World Journal, 2014: 1�9.
11. Zou, X., Zhao, Y. and Zhang, Z. (2019). Preparation of
hydroxyapatite nanostructures with different morphologies and adsorption
behavior on seven heavy metals ions. Journal
of Contaminant Hydrology, 226: 103538.
12. Bouiahya, K., Es-saidi, I., El Bekkali, C., Laghzizil,
A., Robert, D., Nunzi, J. M. and Saoiabi, A. (2019). Synthesis and properties
of alumina-hydroxyapatite composites from natural phosphate for phenol removal
from water. Colloids and Interface
Science Communications, 31: 100188.
13. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien,
S. and Chanthai, S. (2013). Nanocrystalline hydroxyapatite from fish scale
waste: Preparation, characterization and application for selenium adsorption in
aqueous solution. Chemical Engineering
Journal, 215�216: 522�532.
14. Huang, Y., Hsiao, P. and Chai, H. (2011).
Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like
cells. Ceramics International, 37(6):
1825�1831.
15. Parhi, P., Ramanan, A. and Ray, A. (2006).
Hydrothermal synthesis of nanocrystalline powders of alkaline-earth
hydroxyapatites, A�10(PO4)6OH)2
(A=Ca, Sr and Ba). Journal of Material
Sciences, 41: 1455�1458.
16. Lin, K., Pan, J., Chen, Y., Cheng, R. and Xu, X.
(2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite
nanopowders. Journal of Hazardous
Materials, 161(1): 231�240.
17. B Cagnon, B., Chedeville, O., Cherrier, J. F.,
Caqueret, V. and Porte, C. (2011). Evolution of adsorption kinetics and
isotherms of gallic acid on an activated carbon oxidized by ozone: Comparison
to the raw material. Journal of the
Taiwan Institute of Chemical Engineers, 42: 996�1003.
18. Anbia, M., Mohammadi, N. and Mohammadi, K. (2010).
Fast and efficient mesoporous adsorbents for the separation of toxic compounds
from aqueous media. Journal of Hazardous
Materials, 176, 965�972.
19. Rengaraj, S., Yeon, J., Kim, Y., Jung, Y., Ha, Y. and Kim,
W. (2007). Adsorption characteristics of Cu (II) onto ion exchange resins 252H
and 1500H: Kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143: 469�477.
20. Robati, D. (2013). Pseudo-second-order kinetic
equations for modeling adsorption systems for removal of lead ions using
multi-walled carbon nanotube. Journal of
Nanostructure in Chemistry, 3: 55.
21. Abdelwahab, O. and Amin, N. K. (2013). Adsorption of
phenol from aqueous solutions by Luffa
cylindrica fibers: Kinetics, isotherm and thermodynamic studies. Egyptian Journal of Aquatic Research, 39:
215�223.
22. Azmi, N. A. I., Zainudin, N. F., Ali, U. F. M. and Senusi,
F. (2015). Adsorption kinetics on basic red 46 removal using Cerbera odollam activated carbon. Journal of Engineering Science and
Technology, 10: 82�91.
23. Smiciklas, I., Dimović, I. and Mitrić, M.
(2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12): 2267�2274.
24. Salimi, M. N., Bridson, R. H., Grover, L. M. and Leeke,
G. A. (2012). Effect of processing conditions on the formation of
hydroxyapatite nanoparticles. Powder
Technology, 218: 109�118.
25. Yusof, S. R. M., Zahri, N. A. M., Koay, Y. S.,
Nourouzi, M. M., Chuah, L. A. and Choong, T. S. Y. (2015). Removal of fluoride
using modified kenaf as adsorbent. Journal
of Engineering Science and Technology, 10: 11�22.
26. Anbia, M. and Ghaffari, A. (2009). Adsorption of
phenolic compounds from aqueous solutions using carbon nanoporous adsorbent
coated with polymer. Applied Surface
Science, 255: 9487�9492.