Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 926 - 937

DOI: 10.17576/mjas-2019-2306-02

 

 

 

ADSORPTION STUDY ON THE REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING SODIUM HYDROXIDE-MODIFIED

Carica papaya PEELS

 

(Kajian Penjerapan Dalam Penyingkiran Ion Kuprum Dari Larutan Akueus Menggunakan Kulit Carica papaya Yang Dimodifikasikan Dengan Sodium Hidroksida)

 

Muhammad Shahrain Shuhaimen1, Erna Normaya Abdulah,1 Rosliza Mohd Salim2, Mohd Armi Abu Samah2, Muhammad Nor Omar3, Mohammad Norazmi Ahmad1*

 

1Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science

2Department of Chemistry, Kulliyyah of Science

3Department of Biotechnology, Kulliyyah of Science

International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: mnorazmi85@gmail.com

 

 

Received: 1 August 2018; Accepted: 10 November 2019

 

 

Abstract

Recently, environment contamination by heavy metals has gained much attention due to the significant impact on public health. Heavy metals such as copper are non-biodegradable pollutants and they are very difficult to eliminate naturally from the environment. Therefore, this study was conducted to deal with the removal copper from an aqueous solution using a highly efficient, environmentally friendly adsorbent from Carica papaya peels (CPP) prepared by chemical treatment of NaOH modification. The effects of adsorbent mass, pH of the aqueous solution, and contact time were studied in batch experiments. The optimum parameters for the removal of copper (79%) are 0.9 g, pH = 3, and 45 minutes. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were employed to validate the efficiencies of the adsorbents towards copper. FT-IR analysis showed that carboxyl and hydroxyl functional groups were involved in the adsorption of copper ions. As a conclusion, the chemical-treated CPP can be utilized as a potential biosorbent for copper removal from aqueous solutions.

 

Keywords:  Carica papaya peels, adsorbent, heavy metal

 

Abstrak

Sejak kebelakangan ini, pencemaran alam sekitar berpunca dari logam berat telah mendapat banyak perhatian berikutan kesannya yang signifikan terhadap kesihatan awam. Logam berat seperti kuprum adalah bahan pencemar tidak boleh diurai dan ianya sangat sukar untuk disingkirkan secara semula jadi dari alam sekitar. Oleh itu, kajian ini dijalankan untuk menangani penyingkiran tembaga daripada larutan akueus menggunakan penjerap yang berkesan dan mesra alam dari kulit Carica papaya (CPP) yang dihasilkan melalui pengolahan secara kimia menggunakan NaOH. Kesan jisim penjerap, pH larutan akueus, dan masa hubungan dikaji dalam eksperimen ini. Parameter optima keberkesanan penjerap untuk menyingkirkan kuprum (79%) adalah pada 0.9 g jisim penjerap, pH = 3, dan 45 minit masa pengeraman. Pengimbas mikroskop elektron (SEM) dan Fourier spektroskopi inframerah Fourier (FT-IR) digunakan untuk mengesahkan kecekapan penjerap untuk menjerap kuprum. Analisis FT-IR menunjukkan bahawa kumpulan berfungsi karboksil dan hidroksil adalah terlibat dalam penjerapan ion kuprum. Sebagai kesimpulan, CPP yang dirawat dengan kimia boleh digunakan sebagai penjerap yang berpotensi untuk penyingkiran kuprum daripada larutan akueus.

 

Kata kunci:  kulit Carica papaya, penjerap, dan logam berat

 

References

1.       Drinking-water Quality Committee. (2011). Guidelines for Drinking-water Quality. Geneva: World Health Organization.

2.       Othman, N., Asharuddin, S. M., and Rahman, M. F. H. A. (2013). An overview of fruit waste as sustainable adsorbent for heavy metal removal. Applied Mechanics and Materials, 389: 29 – 35.

3.       Environmental Health Criteria 200 (1998). Copper. Geneva: World Health Organization.

4.       Krishna, R. H., and Swamy, A. V. V. S. (2012). Physico-chemical key parameters, Langmuir and Freundlich isotherm and lagergren rate constant studies on the removal of divalent nickel from the aqueous solutions onto powder of calcined brick. International Journal of Engineering Research and Development, 4(1): 29 – 38.

5.       Mathew, B. B., Jaishankar, M., Biju, V. G., and Beeregowda, K. N. (2016). Role of bioadsorbents in reducing toxic metals. Journal of Toxicology, 2016: 4369604.

6.       Hadi, N. A., Rohaizar, N. A., and Sien, W. C. (2011).  Removal of Cu(II) from water by adsorption on papaya seed. Asian Transactions on Engineering, 1(5): 49 – 55.

7.       Abas, S. N. A., Ismail, M. H. S., Kamal, M. L., and Izhar, S. (2013).  Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11): 1518 – 1530.

8.       Kyzas, G. Z., and Kostoglou, M. (2014). Green adsorbents for wastewaters: A critical review. Materials, 7(1): 333 – 364.

9.       Saka, C., Şahin, O., and Kucuk, M. M. (2012). Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. International Journal of Environmental Science and Technology, 9(2): 379 – 394.

10.    Kanyal, M., and Bhatt, A. A. (2015). Removal of heavy metals from water (Cu and Pb) using household waste as an adsorbent. International Biodeterioration and Biodegradation, 6(1): 269 – 275.

11.    Ghani, N. T. G., and El-Chaghaby, G. A. (2014). Biosorption for metal ions removal from aqueous solutions: A review of recent studies. International Journal of Latest Research in Science and technology, 3(1): 24 – 42.

12.    Nasuha, N., Zurainan, H. Z., Maarof, H. I., Zubir, N. A., and Amri, N. (2011). Effect of cationic and anionic dye adsorption from aqueous solution by using chemically modified papaya seed. International Conference on Environmental Science and Engineering, 8: 50 – 54.

13.    Hameed, B. H. (2009). Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162(2): 939 – 944.

14.    Mondal, P., Majumder, C. B., and Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 150: 695 – 702.

15.    Stankovic, M. N., Krstic, N. S., Mitrovic J. Z., Najdanovic S. M., Petrovic, M. M., Bojic, D. V. and Bojic, A. L. (2016). Biosorption of copper(II) ions by methyl-sulfonated Lagenaria vulgaris shell: Kinetic, thermodynamic and desorption studies. New Journal of Chemistry, 40(3): 2126 – 2134.

16.    Matsui, Y., Yoshida, T., Nakao, S., Knappe, D. R. U., and Matsushita, T. (2012). Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons. Water Research, 26: 4741 – 4749.

17.    Shafiq, M., Alazba, A. A., and Amin, M. T. (2018). Removal of heavy metals from wastewater date palm as a biosorbent: a comparative review. Sains Malaysiana, 47: 35 – 49.

18.    Ong, S. T., Yip, S. P., Keng, P. S., Lee, S. L., and Hung, Y. T. (2012). Papaya (Carica papaya) seed as a low-cost sorbent for zinc removal. African Journal of Agricultural Research, 7(5): 810 – 819.

19.    Chong, H. L. H., and Thoe, J. M. L. (2018). Impact of sodium hydroxide concentration and reaction time on the modification of empty fruit bunch for heavy metal adsorption. ASM Science Journal, 11(2): 164 – 170.

20.    Argun, M. E., and Dursun, S. (2007). Activation of pine bark surface with NaOH for lead removal. Journal of International Environmental Application and Science, 2(1 -2): 5 – 10.

21.    Afroze, S., Sen, T. K., and Ang, H. M. (2016). Adsorption removal of Zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana Bark: Kinetics, mechanism and equilibrium study. Process Safety and Environment Protection, 102: 336 – 352.

22.    Khokhar, A., Siddique, Z., and Misbah. (2015). Removal of heavy metal ions by chemically treated Melia azedarach L. leaves. Journal of Environmental Chemical Engineering, 3: 944 – 952.

23.    Feng, N. C., Guo, X. Y., Liang, S. (2010). Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide. Transactions of Nonferrous Metals Society of China, 20: 146 – 152.

24.    Hu, C., Li, J., Zhou, Y., Li, M., Xue, F., and Li, H. (2009). Enhanced removal of methylene blue from aqueous solution by pummelo peel pretreated with sodium hydroxide. Journal of Health Science. 55(4): 619 – 624.

25.    Al-Degs, Y., El-Barghouthi, M. I., El-Sheikh, A., and Walker, G. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77: 16 – 23.

26.    Cismesia, A. P., Nicholls, G. R., and Polfer, N. C. (2016). Amine vs. carboxylic acid protonation in ortho-, meta-, and para-aminobenzoic acid: An IRMPD spectroscopy study. Journal of Molecular Spectroscopy, 332: 79 – 85.

27.    Hossain, M. A., Ngo, H. H., Guo, W. S., and Nguyen, T. V. (2012). Removal of copper from water by adsorption onto banana peel as bioadsorbent. International Journal of GEOMATE, 2(2): 227 – 234.

28.    Albrecht, T. W. J., Addai-Mensah, J., and Fornasiero, D. (2011). Effect of pH, concentration and temperature on copper and zinc hydroxide formation/precipitation in solution. In proceedings of CHEMECA 2011 – Engineering a Better World, Sydney, New South Wales, September 18–21: 2100 – 2110.

29.    Torapava, N. (2011). Hydration, solvation and hydrolysis of multicharged metal ions. Thesis of PhD Degree. Uppsala: Swedish University of Agricultural Sciences.

30.    Wang, X., and Wang, C. (2016). Chitosan-poly(vinyl alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence and adsorption mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500: 186 – 194.

31.    Nasuha, N., and Hameed, B. H. (2011). Effect of cationic and anionic dye adsorption from aqueous solution by using chemically modified papaya seed. Chemical Engineering Journal, 166(2): 783 – 786.

32.    Chowdhury, S., Mishra, R., Saha, P., and Kushwa, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1): 159 – 168.

33.    Pua, F. L., Sajab, M. S., Chia, C. H., Zakaria, S., Rahman, I. A., and Sali, M. S. (2013). Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3): 460 – 465.

34.    Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., and Almeida, V. C. (2016).  NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288: 778 – 788.

35.    Lalhruaitluanga, H., Jayaram, K., Prasad, M. N. V., and Kumar, K. K. (2010). Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) - A comparative study. Journal of Hazardous Materials, 175(1): 311 – 318.

36.    Nie, B., Stutzman, J., and Xie, A. (2005). A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophysical Journal, 88(4): 2833 – 2847.

37.    Iqbal, M., Saeed, A., and Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164 (1): 161 – 171.

38.    Gilbert, U. A., Emmanuel, I. U., Adebanjo, A. A., and Olalere, G. A. (2011). Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass & Bioenergy, 35(7): 2517 – 2525.

 

 

 




Previous                    Content                    Next