Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 926 - 937
DOI:
10.17576/mjas-2019-2306-02
ADSORPTION
STUDY ON THE REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING SODIUM
HYDROXIDE-MODIFIED
Carica papaya PEELS
(Kajian Penjerapan Dalam Penyingkiran Ion Kuprum Dari
Larutan Akueus Menggunakan Kulit Carica
papaya Yang Dimodifikasikan Dengan Sodium Hidroksida)
Muhammad Shahrain Shuhaimen1,
Erna Normaya Abdulah,1 Rosliza Mohd Salim2, Mohd Armi Abu
Samah2, Muhammad Nor Omar3, Mohammad Norazmi Ahmad1*
1Experimental and Theoretical Research Laboratory, Department
of Chemistry, Kulliyyah of Science
2Department of Chemistry, Kulliyyah of Science
3Department of Biotechnology, Kulliyyah of Science
International Islamic University of Malaysia, 25200
Kuantan, Pahang, Malaysia
*Corresponding
author: mnorazmi85@gmail.com
Received: 1 August 2018;
Accepted: 10 November 2019
Abstract
Recently, environment
contamination by heavy metals has gained much attention due to the significant
impact on public health. Heavy metals such as copper are non-biodegradable
pollutants and they are very difficult to eliminate naturally from the
environment. Therefore, this study was conducted to deal with the removal
copper from an aqueous solution using a highly efficient, environmentally
friendly adsorbent from Carica papaya
peels (CPP) prepared by chemical treatment of NaOH modification. The effects of
adsorbent mass, pH of the aqueous solution, and contact time were studied in
batch experiments. The optimum parameters for the removal of copper (79%) are
0.9 g, pH = 3, and 45 minutes. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR)
were employed to validate the efficiencies of the adsorbents towards copper.
FT-IR analysis showed that carboxyl and hydroxyl functional groups were
involved in the adsorption of copper ions. As a conclusion, the
chemical-treated CPP can be utilized as a potential biosorbent for copper
removal from aqueous solutions.
Keywords: Carica papaya
peels, adsorbent, heavy metal
Abstrak
Sejak kebelakangan ini,
pencemaran alam sekitar berpunca dari logam berat telah mendapat banyak
perhatian berikutan kesannya yang signifikan terhadap kesihatan awam. Logam
berat seperti kuprum adalah bahan pencemar tidak boleh diurai dan ianya sangat
sukar untuk disingkirkan secara semula jadi dari alam sekitar. Oleh itu, kajian
ini dijalankan untuk menangani penyingkiran tembaga daripada larutan akueus
menggunakan penjerap yang berkesan dan mesra alam dari kulit Carica papaya
(CPP) yang dihasilkan melalui pengolahan secara kimia menggunakan NaOH. Kesan
jisim penjerap, pH larutan akueus, dan masa hubungan dikaji dalam eksperimen
ini. Parameter optima keberkesanan penjerap untuk menyingkirkan kuprum (79%)
adalah pada 0.9 g jisim penjerap, pH = 3, dan 45 minit masa pengeraman.
Pengimbas mikroskop elektron (SEM) dan Fourier spektroskopi inframerah Fourier (FT-IR)
digunakan untuk mengesahkan kecekapan penjerap untuk menjerap kuprum. Analisis
FT-IR menunjukkan bahawa kumpulan berfungsi karboksil dan hidroksil adalah
terlibat dalam penjerapan ion kuprum. Sebagai kesimpulan, CPP yang dirawat
dengan kimia boleh digunakan sebagai penjerap yang berpotensi untuk
penyingkiran kuprum daripada larutan akueus.
Kata kunci: kulit Carica
papaya, penjerap, dan logam berat
References
1.
Drinking-water Quality Committee. (2011). Guidelines for
Drinking-water Quality. Geneva: World
Health Organization.
2.
Othman, N., Asharuddin, S. M., and Rahman, M. F. H. A.
(2013). An overview of fruit waste as sustainable adsorbent for heavy metal
removal. Applied Mechanics and Materials,
389: 29 – 35.
3.
Environmental Health Criteria 200 (1998). Copper.
Geneva: World Health Organization.
4.
Krishna, R. H., and Swamy, A. V. V. S. (2012).
Physico-chemical key parameters, Langmuir and Freundlich isotherm and lagergren
rate constant studies on the removal of divalent nickel from the aqueous
solutions onto powder of calcined brick. International
Journal of Engineering Research and Development, 4(1): 29 – 38.
5.
Mathew, B. B., Jaishankar, M., Biju, V. G., and
Beeregowda, K. N. (2016). Role of bioadsorbents in reducing toxic metals. Journal of Toxicology, 2016: 4369604.
6.
Hadi, N. A., Rohaizar, N. A., and Sien, W. C.
(2011). Removal of Cu(II) from water by
adsorption on papaya seed. Asian
Transactions on Engineering, 1(5): 49 – 55.
7.
Abas, S. N. A., Ismail, M. H. S., Kamal, M. L., and
Izhar, S. (2013). Adsorption process of
heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11): 1518 – 1530.
8.
Kyzas, G. Z., and Kostoglou, M. (2014). Green
adsorbents for wastewaters: A critical review. Materials, 7(1): 333 – 364.
9.
Saka, C., Şahin, O., and Kucuk, M. M. (2012).
Applications on agricultural and forest waste adsorbents for the removal of
lead (II) from contaminated waters. International
Journal of Environmental Science and
Technology, 9(2): 379 – 394.
10.
Kanyal, M., and Bhatt, A. A. (2015). Removal of heavy
metals from water (Cu and Pb) using household waste as an adsorbent. International Biodeterioration and
Biodegradation, 6(1): 269 – 275.
11.
Ghani, N. T. G., and El-Chaghaby, G. A. (2014).
Biosorption for metal ions removal from aqueous solutions: A review of recent
studies. International Journal of Latest
Research in Science and technology, 3(1): 24 – 42.
12.
Nasuha, N., Zurainan, H. Z., Maarof, H. I., Zubir, N. A.,
and Amri, N. (2011). Effect of cationic and anionic dye adsorption from aqueous
solution by using chemically modified papaya seed. International Conference on Environmental Science and Engineering,
8: 50 – 54.
13.
Hameed, B. H. (2009). Evaluation of papaya seeds as a
novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 162(2):
939 – 944.
14.
Mondal, P., Majumder, C. B., and Mohanty, B. (2008).
Effects of adsorbent dose, its particle size and initial arsenic concentration
on the removal of arsenic, iron and manganese from simulated ground water by Fe3+
impregnated activated carbon. Journal of
Hazardous Materials, 150: 695 – 702.
15.
Stankovic, M. N., Krstic, N. S., Mitrovic J. Z.,
Najdanovic S. M., Petrovic, M. M., Bojic, D. V. and Bojic, A. L. (2016). Biosorption
of copper(II) ions by methyl-sulfonated Lagenaria
vulgaris shell: Kinetic, thermodynamic and desorption studies. New Journal of Chemistry, 40(3): 2126 – 2134.
16.
Matsui, Y., Yoshida, T., Nakao, S., Knappe, D. R. U., and
Matsushita, T. (2012). Characteristics of competitive adsorption between
2-methylisoborneol and natural organic matter on superfine and conventionally
sized powdered activated carbons. Water Research,
26: 4741 – 4749.
17.
Shafiq, M., Alazba, A. A., and Amin, M. T. (2018).
Removal of heavy metals from wastewater date palm as a biosorbent: a
comparative review. Sains Malaysiana,
47: 35 – 49.
18.
Ong, S. T., Yip, S. P., Keng, P. S., Lee, S. L., and
Hung, Y. T. (2012). Papaya (Carica papaya) seed as a low-cost sorbent
for zinc removal. African Journal of
Agricultural Research, 7(5): 810 – 819.
19.
Chong, H. L. H., and Thoe, J. M. L. (2018). Impact of
sodium hydroxide concentration and reaction time on the modification of empty
fruit bunch for heavy metal adsorption. ASM
Science Journal, 11(2): 164 – 170.
20.
Argun, M. E., and Dursun, S. (2007). Activation of
pine bark surface with NaOH for lead removal. Journal of International Environmental Application and Science, 2(1
-2): 5 – 10.
21.
Afroze, S., Sen, T. K., and Ang, H. M. (2016). Adsorption
removal of Zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana Bark: Kinetics,
mechanism and equilibrium study. Process
Safety and Environment Protection, 102: 336 – 352.
22.
Khokhar, A., Siddique, Z., and Misbah. (2015). Removal
of heavy metal ions by chemically treated Melia
azedarach L. leaves. Journal of
Environmental Chemical Engineering, 3: 944 – 952.
23.
Feng, N. C., Guo, X. Y., Liang, S. (2010). Enhanced
Cu(II) adsorption by orange peel modified with sodium hydroxide. Transactions of Nonferrous Metals Society of
China, 20: 146 – 152.
24.
Hu, C., Li, J., Zhou, Y., Li, M., Xue, F., and Li, H.
(2009). Enhanced removal of methylene blue from aqueous solution by pummelo
peel pretreated with sodium hydroxide. Journal
of Health Science. 55(4): 619 – 624.
25.
Al-Degs, Y., El-Barghouthi, M. I., El-Sheikh, A., and
Walker, G. (2008). Effect of solution pH, ionic strength, and temperature on
adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77: 16 – 23.
26.
Cismesia, A. P., Nicholls, G. R., and Polfer, N. C.
(2016). Amine vs. carboxylic acid protonation in ortho-, meta-, and
para-aminobenzoic acid: An IRMPD spectroscopy study. Journal of Molecular Spectroscopy, 332: 79 – 85.
27.
Hossain, M. A., Ngo, H. H., Guo, W. S., and Nguyen, T.
V. (2012). Removal of copper from water by adsorption onto banana peel as
bioadsorbent. International Journal of
GEOMATE, 2(2): 227 – 234.
28.
Albrecht, T. W. J., Addai-Mensah, J., and Fornasiero,
D. (2011). Effect of pH, concentration and temperature on copper and zinc
hydroxide formation/precipitation in solution. In proceedings of CHEMECA 2011 –
Engineering a Better World, Sydney, New South Wales, September 18–21: 2100 –
2110.
29.
Torapava, N. (2011). Hydration, solvation and
hydrolysis of multicharged metal ions. Thesis of PhD Degree. Uppsala: Swedish
University of Agricultural Sciences.
30.
Wang, X., and Wang, C. (2016). Chitosan-poly(vinyl
alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence
and adsorption mechanisms. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 500: 186 – 194.
31.
Nasuha, N., and Hameed, B. H. (2011). Effect of
cationic and anionic dye adsorption from aqueous solution by using chemically
modified papaya seed. Chemical
Engineering Journal, 166(2): 783 – 786.
32.
Chowdhury, S., Mishra, R., Saha, P., and Kushwa, P.
(2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of
malachite green onto chemically modified rice husk. Desalination, 265(1): 159 – 168.
33.
Pua, F. L., Sajab, M. S., Chia, C. H., Zakaria, S.,
Rahman, I. A., and Sali, M. S. (2013). Alkaline-treated cocoa pod husk as
adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3): 460 – 465.
34.
Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L.
S., Martins, A. C., Silva, T. L., and Almeida, V. C. (2016). NaOH-activated carbon of high surface area
produced from guava seeds as a high-efficiency adsorbent for amoxicillin
removal: Kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288: 778 – 788.
35.
Lalhruaitluanga, H., Jayaram, K., Prasad, M. N. V.,
and Kumar, K. K. (2010). Lead (II) adsorption from aqueous solutions by raw and
activated charcoals of Melocanna baccifera Roxburgh (bamboo) - A
comparative study. Journal of Hazardous
Materials, 175(1): 311 – 318.
36.
Nie, B., Stutzman, J., and Xie, A. (2005). A
vibrational spectral maker for probing the hydrogen-bonding status of
protonated Asp and Glu residues. Biophysical
Journal, 88(4): 2833 – 2847.
37.
Iqbal, M., Saeed, A., and Zafar, S. I. (2009). FTIR
spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange,
and EDX analysis for understanding the mechanism of Cd2+ and Pb2+
removal by mango peel waste. Journal of
Hazardous Materials, 164 (1): 161 – 171.
38.
Gilbert, U. A., Emmanuel, I. U., Adebanjo, A. A., and
Olalere, G. A. (2011). Biosorptive removal of Pb2+
and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass &
Bioenergy, 35(7): 2517 – 2525.