Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 407 - 422
DOI:
10.17576/mjas-2019-2303-05
MAGNETITE GRAPHENE FOR
ELECTROCHEMICAL DETERMINATION OF URIC ACID
(Magnetit Grafin untuk Penentuan Elektrokimia Asid
Urik)
Yee Kin Weng, Azleen Rashidah
Mohd Rosli, Farhanini Yusoff*
School of Marine
and Environmental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: farhanini@umt.edu.my
Received: 17
February 2019; Accepted: 22 May 2019
Abstract
In
this work, the magnetite-reduced graphene oxide (Fe3O4/rGO)
was fabricated for a selective voltammetric detection of uric acid. The magnetite-reduced
graphene oxide is biocompatible sensing material that was synthesized through
one-step reaction mechanism. The attachment of spherical like Fe3O4
particle on the rGO sheet was characterized by Fourier Transform Infrared
(FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis) and Scanning Electron
Microscopy (SEM). The electrochemical performance of the Fe3O4/rGO/GCE
electrode were studied by Cyclic Voltammetry (CV) and Differential Pulse
Voltammetry (DPV). The superparamagtism property of the Fe3O4
anchoring on the rGO sheet provides a conduction pathway for the analyte
diffusion meanwhile promote the electron transfer kinetic between the
electroactive species and electrode surface. The enhanced current response
signal produced from the reduction-oxidation process by the electroactive
species were optimized further in parameters of scan rate, concentration of
uric acid and pH value of the supporting electrolyte. The observed DPV response
displays a linearity relationship on uric acid concentration ranging from 4 μM
to 100 μM with correlation coefficient 0.989 and a sensitivity of 0.08478
μA/μM. The detection limit and limit of quantitation were found to be 3.04 μM
and 10.14 μM respectively.
Keywords: magnetite, reduced graphene oxide, uric acid,
electrochemical sensor
Abstrak
Dalam
hasil kerja ini, magnetit-grafin oksida terturun (Fe3O4/rGO)
telah difabrikasikan untuk tujuan pengesanan voltametrik terpilih bagi asid
urik. Magnetit-grafin oksida terturun merupakan bahan sensor bioserasi yang telah
disintesis melalui mekanisma tindak balas satu langkah. Pelekatan zarah sfera
Fe3O4 pada lembaran rGO telah dicirikan menggunakan
Inframerah Transformasi Fourier (FTIR), Spektoskopi Sinar Ultra Lembayung
Terlihat (UV-Vis), dan Mikroskop Imbasan Elektron (SEM). Prestasi
elektrokimia elektrod Fe3O4/rGO/GCE
telah dikaji menggunakan kaedah Voltametri Berkitar (CV) dan Voltammetri
Pembezaan Denyutan (DPV). Ciri-ciri superparamagnetisma Fe3O4
yang terlekat di atas lembaran rGO menyediakan laluan konduktif untuk
penyerapan analit dan juga meningkatkan kinetik pemindahan elektron di antara
spesies elektroaktif dan permukaan elektrod. Peningkatan isyarat tindakbalas
arus yang dihasilkan dari proses pengoksidaan dan pengurangan oleh spesies
elektroaktif telah dioptimumkan lebih lanjut didalam pengoptimuman kadar
imbasan, kepekatan asid urik dan nilai pH elektrolit sokongan. DPV yang telah
diperhatikan menunjukkan hubungan linear di antara kepekatan asid urik antara 4
μM sehingga 100 μM berserta pekali kolerasi 0.989 dan sensitivity 0.08478
µA/µM. Had pengesanan dan had kuantifikasi masing-masing adalah 3.04 µM dan
10.14 µM.
Kata kunci: magnetit, grafin oksida terturun, asid
urik, sensor elektrokimia
References
1.
Wang, H., Ren, F., Wang, C., Yang, B., Bin, D.,
Zhang, and Du, Y. (2014). Simultaneous
determination of dopamine, uric acid and ascorbic acid using a glassy carbon
electrode modified with reduced graphene oxide. RSC Advances, 4(51):
26895–26901.
2.
So, A. and Thorens, B. (2010). Science in medicine uric acid
transport and disease. The Journal of Clinical Investigation, 120(6):
1791–1799.
3.
Muraoka, S. and Miura, T. (2003). Inhibition by uric acid of
free radicals that damage biological molecules. Pharmacology and Toxicology.
93 (6): 284–289.
4.
Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G.,
Neri, G. and Sekar, C. (2015). Simultaneous electrochemical determination of
epinephrine and uric acid in the presence of ascorbic acid using SnO2 graphene
nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 221: 1412–1422.
5.
Jiang, J. and Du, X. (2014). Sensitive electrochemical
sensors for simultaneous determination of ascorbic acid, dopamine, and uric
acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale, 6
(19): 11303–11309.
6.
Teymourian, H., Salimi, A. and Khezrian, S. (2013). Fe3O4
Magnetic nanoparticles/reduced graphene oxide nanosheets as a novel
electrochemical and bioeletrochemical sensing platform. Biosensors and
Bioelectronics, 49: 1–8.
7.
Peik-See, T., Pandikumar, A., Nay-Ming, H., Hong-Ngee, L. and
Sulaiman, Y. (2014). Simultaneous electrochemical detection of dopamine and
ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon
electrode. Sensors, 14(8): 15227–15243.
8.
Zheng, D., Hu, H., Liu, X. and Hu, S. (2015). Application of
graphene in elctrochemical sensing. Current Opinion in Colloid and Interface
Science, 20 (5–6): 383–405.
9.
Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C. and
Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites
for arsenic removal. ACS Nano, 4(7): 3979–3986.
10.
Farghali, M., Material, A., Salah, T. and Al-enizi, A. M.
(2014). Graphene/magnetite nanocomposite for potential environmental
application. International Journal of
Electrochemical Sciences, 10: 529–537.
11.
Yusoff, F., Ngai, T. Z., Chai, C. H. and Lee, P. S. (2018).
The electrochemical behavior of zinc oxide/ reduced graphene oxide composite
electrode in dopamine. Malaysian Journal of Analytical Sciences, 22 (2):
227–237.
12.
Andrijanto, E., Shoelarta, S., Subiyanto, G. and Rifki, S.
(2016). Facile synthesis of graphene from graphite using ascorbic acid as
reducing agent. AIP Conference Proceedings. 1725: 020003.
13.
Yusoff, F. and Mohamed, N. B. (2018). The physical and
electrochemical characteristic of gold nanoparticles supported pedot/graphene
composite as potential cathode material in fuel cells. Malaysian Journal of
Analytical Sciences, 22(6): 921–930.
14.
Thi, N., Hoan, V., Thu, A., Duc, H. Van, Cuong, N. D., Khieu,
D. Q.,Vo, V., Vuong, N. T. and Vn, H. (2016).
Fe3O4/reduced graphene oxide nanocomposite: Synthesis and
its application for toxic metal ion removal. Journal of Chemistry, 2016:
1–10.
15.
Mahmood, H., Habib, A., Mujahid, M., Tanveer, M., Javed, S.
and Jamil, A. (2014). Band gap reduction of titania thin films using graphene
nanosheets. Materials Science in Semiconductor Processing, 24(1):
193–199.
16.
Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y.,
Long, L., Cifuentes, M. P., Humphrey, M. G., Zhang, L., Shao, J. and Zhang, C.
(2016). Covalent functionalization of reduced graphene oxide with porphyrin by
means of diazonium chemistry for nonlinear optical performance. Scientific
Reports, 6: 1–12.
17.
Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T. and
Okuyama, K. (2017). Correlation between particle size/domain structure and
magnetic properties of highly crystalline Fe3O4 nanoparticles.
Scientific Reports, 7(1): 1–4.
18.
Rajput, S., Pittman, C. U., and Mohan, D. (2016). Magnetic
magnetite (Fe3O4) nanoparticle synthesis and applications
for lead (Pb2+) and chromium (Cr6+) removal from water. Journal
of Colloid and Interface Science, 468: 334–346.
19.
Kamakshi, T., Sundari, G. S., Erothu, H. and Rao, T. P.
(2018). Synthesis and characterization of graphene based iron oxide (Fe3O4)
nanocomposites. Rasayan Journal of Chemistry, 11(3): 1113–1119.
20.
Yang, S., Yue, W., Huang, D., Chen, C., Lin, H. and Yang, X.
(2012). A facile green strategy for rapid reduction of graphene oxide by
metallic zinc. RSC Advances, 2(23): 8827-8832.
21.
Xue, Y., Chen, H., Yu, D., Wang, S., Yardeni, M., Dai, Q.,
Guo, M., Liu Y., Lu, F., Qu, J. and Dai,
L. (2011). Oxidizing metal ions with graphene oxide: the in situ formation of
magnetic nanoparticles on self-reduced graphene sheets for multifunctional
applications. Chemical Communications, 47(42): 11689–11691.
22.
Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene
oxide formation. ACS Nano, 8 (3): 3060–3068.
23.
Aneesh, P. K., Nambiar, S. R., Rao, T. P. and Ajayaghosh, A.
(2014). Electrochemically synthesized partially reduced graphene oxide modified
glassy carbon electrode for individual and simultaneous voltammetric
determination of ascorbic acid, dopamine and uric acid. Analytical Methods,
6(14): 5322–5330.
24.
Hariani, P.L., Faizal, M., Ridwan, R., Marsi, M., and
Setiabudidaya, D. (2013). Synthesis and Properties of Fe3O4
Nanoparticles by Co-precipitation Method to Removal Procion Dye. International
Journal of Environmental Science and Development. 4 (3): 336–340.
25.
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E.
S., Eisenhart, T. T., and Dempsey, J. L. (2018). A practical beginner’s guide
to cyclic voltammetry. Journal of Chemical Education, 95(2): 197–206.
26.
Chao, M., Ma, X. and Li, X. (2012). Graphene-modified
electrode for the selective determination of uric acid under coexistence of
dopamine and ascorbic acid. International Journal of Electrochemical Science,
7(3): 2201–2213.
27.
Yusoff, F., Aziz, A., Mohamed, N., and Ab Ghani, S. (2013).
Synthesis and characterizations of BSCF at different pH as future cathode
materials for fuel cell. International Journal of Electrochemical Science.
8 (8): 10672–10687.
28.
Yusoff, F., Mohamed, N., Azizan, A. and Ab Ghani, S. (2016).
The perovskite Ba0.5Sr0.5Co0.2Fe0.8O3-MWCNT
modified glassy carbon electrode - its characterization and capacity in oxygen
reduction reaction. International Journal of Electrochemical Science,
11(7): 5766–5780.
29.
Tukimin, N., Abdullah, J. and Sulaiman, Y. (2017).
Development of a PrGo-modified electrode for uric acid determination in the
presence of ascorbic acid by an electrochemical technique. Sensors
(Switzerland). 17 (7): 1539.
30.
Sun, H., Cao, L. and Lu, L. (2011). Magnetite/reduced
graphene oxide nanocomposites: one step solvothermal synthesis and use as a
novel platform for removal of dye pollutants. Nano Research, 4(6):
550–562.
31.
Zhang, W., Chen, J., Li, Y., Yang, W., Zhang, Y. and Zhang, Y.
(2017). Novel UIO-66-NO2@XC-72 nanohybrid as an electrode material for
simultaneous detection of ascorbic acid, dopamine and uric acid. RSC
Advances, 7(10): 5628–5635.
32.
Stoyanova, A., Ivanov, S., Tsakova, V. and Bund, A. (2011).
Au nanoparticle-polyaniline nanocomposite layers obtained through
layer-by-layer adsorption for the simultaneous determination of dopamine and
uric acid. Electrochimica Acta, 56(10):
3693–3699.
33.
Yusoff, F., Lee, P.S, and Noorashikin, M.S. (2018). The
electroxidation of uric acid at zinc oxide/reduced graphene oxide composites
modified electrode. AIP Conference
Proceeding. 2031:1-6. Kaur, B., Pandiyan, T., Satpati, B. and Srivastava,
R. (2013).
34.
Simultaneous and sensitive determination of ascorbic acid,
dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced
graphene oxide modified electrode. Colloids and Surfaces B: Biointerfaces,
111: 97–106.
35.
Wang,
Y. and Tong, L. L. (2010). Electrochemical sensor for simultaneous
determination of uric acid, xanthine and hypoxanthine based on poly
(bromocresol purple) modified glassy carbon electrode. Sensors and
Actuators, B: Chemical, 150(1): 43-49.
36.
Khamlichi,
R. El, Bouchta, D., Anouar, E. H., Atia, M. Ben, Attar, A., Choukairi, M.,
Tazi, S., Ihssane, R., Faiza, C., Khalid, D. and Khalid, R. T. (2017). A novel
l-leucine modified sol-gel-carbon electrode for simultaneous electrochemical
detection of homovanillic acid, dopamine and uric acid in neuroblastoma
diagnosis. Materials Science and Engineering
C, 71: 870–878.