Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 407 - 422

DOI: 10.17576/mjas-2019-2303-05

 

 

 

MAGNETITE GRAPHENE FOR ELECTROCHEMICAL DETERMINATION OF URIC ACID

 

(Magnetit Grafin untuk Penentuan Elektrokimia Asid Urik)

 

Yee Kin Weng, Azleen Rashidah Mohd Rosli, Farhanini Yusoff*

 

School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 17 February 2019; Accepted: 22 May 2019

 

 

Abstract

In this work, the magnetite-reduced graphene oxide (Fe3O4/rGO) was fabricated for a selective voltammetric detection of uric acid. The magnetite-reduced graphene oxide is biocompatible sensing material that was synthesized through one-step reaction mechanism. The attachment of spherical like Fe­3O4 particle on the rGO sheet was characterized by Fourier Transform Infrared (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis) and Scanning Electron Microscopy (SEM). The electrochemical performance of the Fe3O4/rGO/GCE electrode were studied by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The superparamagtism property of the Fe3O4 anchoring on the rGO sheet provides a conduction pathway for the analyte diffusion meanwhile promote the electron transfer kinetic between the electroactive species and electrode surface. The enhanced current response signal produced from the reduction-oxidation process by the electroactive species were optimized further in parameters of scan rate, concentration of uric acid and pH value of the supporting electrolyte. The observed DPV response displays a linearity relationship on uric acid concentration ranging from 4 μM to 100 μM with correlation coefficient 0.989 and a sensitivity of 0.08478 μA/μM. The detection limit and limit of quantitation were found to be 3.04 μM and 10.14 μM respectively.

 

Keywords:  magnetite, reduced graphene oxide, uric acid, electrochemical sensor

 

Abstrak

Dalam hasil kerja ini, magnetit-grafin oksida terturun (Fe3O4/rGO) telah difabrikasikan untuk tujuan pengesanan voltametrik terpilih bagi asid urik. Magnetit-grafin oksida terturun merupakan bahan sensor bioserasi yang telah disintesis melalui mekanisma tindak balas satu langkah. Pelekatan zarah sfera Fe­3O4 pada lembaran rGO telah dicirikan menggunakan Inframerah Transformasi Fourier (FTIR), Spektoskopi Sinar Ultra Lembayung Terlihat (UV-Vis), dan Mikroskop Imbasan Elektron (SEM). Prestasi elektrokimia  elektrod Fe3O4/rGO/GCE telah dikaji menggunakan kaedah Voltametri Berkitar (CV) dan Voltammetri Pembezaan Denyutan (DPV). Ciri-ciri superparamagnetisma Fe3O4 yang terlekat di atas lembaran rGO menyediakan laluan konduktif untuk penyerapan analit dan juga meningkatkan kinetik pemindahan elektron di antara spesies elektroaktif dan permukaan elektrod. Peningkatan isyarat tindakbalas arus yang dihasilkan dari proses pengoksidaan dan pengurangan oleh spesies elektroaktif telah dioptimumkan lebih lanjut didalam pengoptimuman kadar imbasan, kepekatan asid urik dan nilai pH elektrolit sokongan. DPV yang telah diperhatikan menunjukkan hubungan linear di antara kepekatan asid urik antara 4 μM sehingga 100 μM berserta pekali kolerasi 0.989 dan sensitivity 0.08478 µA/µM. Had pengesanan dan had kuantifikasi masing-masing adalah 3.04 µM dan 10.14 µM.

 

Kata kunci:  magnetit, grafin oksida terturun, asid urik, sensor elektrokimia

 

References

1.          Wang, H., Ren, F., Wang, C., Yang, B., Bin, D., Zhang,  and Du, Y. (2014). Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide. RSC Advances, 4(51): 26895–26901.

2.          So, A. and Thorens, B. (2010). Science in medicine uric acid transport and disease. The Journal of Clinical Investigation, 120(6): 1791–1799.

3.          Muraoka, S. and Miura, T. (2003). Inhibition by uric acid of free radicals that damage biological molecules. Pharmacology and Toxicology. 93 (6): 284–289.

4.          Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G. and Sekar, C. (2015). Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2 graphene nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 221: 1412–1422.

5.          Jiang, J. and Du, X. (2014). Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale, 6 (19): 11303–11309.

6.          Teymourian, H., Salimi, A. and Khezrian, S. (2013). Fe3O4 Magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49: 1–8.

7.          Peik-See, T., Pandikumar, A., Nay-Ming, H., Hong-Ngee, L. and Sulaiman, Y. (2014). Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors, 14(8): 15227–15243.

8.          Zheng, D., Hu, H., Liu, X. and Hu, S. (2015). Application of graphene in elctrochemical sensing. Current Opinion in Colloid and Interface Science, 20 (5–6): 383–405.

9.          Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C. and Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7): 3979–3986.

10.        Farghali, M., Material, A., Salah, T. and Al-enizi, A. M. (2014). Graphene/magnetite nanocomposite for potential environmental application. International Journal of Electrochemical Sciences, 10: 529–537.

11.        Yusoff, F., Ngai, T. Z., Chai, C. H. and Lee, P. S. (2018). The electrochemical behavior of zinc oxide/ reduced graphene oxide composite electrode in dopamine. Malaysian Journal of Analytical Sciences, 22 (2): 227–237.

12.        Andrijanto, E., Shoelarta, S., Subiyanto, G. and Rifki, S. (2016). Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conference Proceedings. 1725: 020003.

13.        Yusoff, F. and Mohamed, N. B. (2018). The physical and electrochemical characteristic of gold nanoparticles supported pedot/graphene composite as potential cathode material in fuel cells. Malaysian Journal of Analytical Sciences, 22(6): 921–930.

14.        Thi, N., Hoan, V., Thu, A., Duc, H. Van, Cuong, N. D., Khieu, D. Q.,Vo, V., Vuong, N. T. and  Vn, H. (2016). Fe3O4/reduced graphene oxide nanocomposite: Synthesis and its application for toxic metal ion removal. Journal of Chemistry, 2016: 1–10.

15.        Mahmood, H., Habib, A., Mujahid, M., Tanveer, M., Javed, S. and Jamil, A. (2014). Band gap reduction of titania thin films using graphene nanosheets. Materials Science in Semiconductor Processing, 24(1): 193–199.

16.        Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y., Long, L., Cifuentes, M. P., Humphrey, M. G., Zhang, L., Shao, J. and Zhang, C. (2016). Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Scientific Reports, 6: 1–12.

17.        Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T. and Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1): 1–4.

18.        Rajput, S., Pittman, C. U., and Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468: 334–346.

19.        Kamakshi, T., Sundari, G. S., Erothu, H. and Rao, T. P. (2018). Synthesis and characterization of graphene based iron oxide (Fe3O4) nanocomposites. Rasayan Journal of Chemistry, 11(3): 1113–1119.

20.        Yang, S., Yue, W., Huang, D., Chen, C., Lin, H. and Yang, X. (2012). A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Advances, 2(23): 8827-8832.

21.        Xue, Y., Chen, H., Yu, D., Wang, S., Yardeni, M., Dai, Q., Guo, M., Liu Y., Lu, F., Qu, J. and  Dai, L. (2011). Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chemical Communications, 47(42): 11689–11691.

22.        Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene oxide formation. ACS Nano, 8 (3): 3060–3068.

23.        Aneesh, P. K., Nambiar, S. R., Rao, T. P. and Ajayaghosh, A. (2014). Electrochemically synthesized partially reduced graphene oxide modified glassy carbon electrode for individual and simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Analytical Methods, 6(14): 5322–5330.

24.        Hariani, P.L., Faizal, M., Ridwan, R., Marsi, M., and Setiabudidaya, D. (2013). Synthesis and Properties of Fe3O4 Nanoparticles by Co-precipitation Method to Removal Procion Dye. International Journal of Environmental Science and Development. 4 (3): 336–340.

25.        Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., and Dempsey, J. L. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2): 197–206.

26.        Chao, M., Ma, X. and Li, X. (2012). Graphene-modified electrode for the selective determination of uric acid under coexistence of dopamine and ascorbic acid. International Journal of Electrochemical Science, 7(3): 2201–2213.

27.        Yusoff, F., Aziz, A., Mohamed, N., and Ab Ghani, S. (2013). Synthesis and characterizations of BSCF at different pH as future cathode materials for fuel cell. International Journal of Electrochemical Science. 8 (8): 10672–10687.

28.        Yusoff, F., Mohamed, N., Azizan, A. and Ab Ghani, S. (2016). The perovskite Ba0.5Sr0.5Co0.2Fe0.8O3-MWCNT modified glassy carbon electrode - its characterization and capacity in oxygen reduction reaction. International Journal of Electrochemical Science, 11(7): 5766–5780.

29.        Tukimin, N., Abdullah, J. and Sulaiman, Y. (2017). Development of a PrGo-modified electrode for uric acid determination in the presence of ascorbic acid by an electrochemical technique. Sensors (Switzerland). 17 (7): 1539.

30.        Sun, H., Cao, L. and Lu, L. (2011). Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research, 4(6): 550–562.

31.        Zhang, W., Chen, J., Li, Y., Yang, W., Zhang, Y. and Zhang, Y. (2017). Novel UIO-66-NO2@XC-72 nanohybrid as an electrode material for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 7(10): 5628–5635.

32.        Stoyanova, A., Ivanov, S., Tsakova, V. and Bund, A. (2011). Au nanoparticle-polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochimica Acta, 56(10): 3693–3699.

33.        Yusoff, F., Lee, P.S, and Noorashikin, M.S. (2018). The electroxidation of uric acid at zinc oxide/reduced graphene oxide composites modified electrode. AIP Conference Proceeding. 2031:1-6. Kaur, B., Pandiyan, T., Satpati, B. and Srivastava, R. (2013).

34.        Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids and Surfaces B: Biointerfaces, 111: 97–106.

35.        Wang, Y. and Tong, L. L. (2010). Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors and Actuators, B: Chemical, 150(1): 43-49.

36.        Khamlichi, R. El, Bouchta, D., Anouar, E. H., Atia, M. Ben, Attar, A., Choukairi, M., Tazi, S., Ihssane, R., Faiza, C., Khalid, D. and Khalid, R. T. (2017). A novel l-leucine modified sol-gel-carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis. Materials Science and Engineering C, 71: 870–878.

 

 




Previous                    Content                    Next