Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 401 - 406
DOI:
10.17576/mjas-2019-2303-04
CHEMICAL
COMPONENTS OF POLYMERASE CHAIN REACTION IN
18S rRNA FOR DETECTION OF Cryptosporidium
FROM RIVER WATER SAMPLES
(Komponen Kimia Tindak Balas Berantai Polimerase di dalam 18S
rRNA untuk Pengesanan Cryptosporidium
dari Sampel Air Sungai)
Mohd Aiman
Barudin1, Mohammad Lokman Md Isa2,3, Afzan Mat Yusof2,3*
1Department of Biomedical Science, Kulliyyah of
Allied Health Sciences
2Department of Basic Medical Sciences, Kulliyyah of
Nursing
3Integrated Cellular and Molecular Biology Cluster
(iMolec)
International
Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota,
25200
Kuantan, Pahang, Malaysia.
*Corresponding
author: afzan@iium.edu.my
Received: 19
August 2018; Accepted: 18 May 2019
Abstract
The gene of 18S ribosomal RNA or 18S
rRNA is the universal gene function as a general genetic marker for species
identification of microorganisms including parasites. Cryptosporidium
has distinct 18S rRNA genes along different species within the same genus. In
this study, polymerase chain reaction or PCR was used to study chemical
components of PCR setup in amplification of 18S rRNA gene of this parasite. Cryptosporidium
was collected from river water samples and its presence was confirmed using
specific immunofluorescence detection of this parasite. Isolated water
containing Cryptosporidium was then subjected to genomic DNA extraction
before PCR step. The chemical components of PCR consisting of MgCI2,
deoxynucleotide triphosphate (DNTPs), Polymerases, free DNase-water, universal
primers and PCR buffer were studied in different volume and concentration. Each chemical component of PCR was optimized
differently in yielding the same final volume of 20 µL per each reaction. The
value range of chemical components of PCR consisted of MgCI2 (0.1 µM-0.5
µM), dNTPs (50-250 mM), free DNase water (5-10 µL), polymerases (0.2-0.5 U) and
universal primers (2-20 µM). The result indicated that 0.2 µM of MgCI2,
100 mM of dNTPs, less than 10 µL of free DNase water, 0.5 U of polymerases and
10 mM of universal primers were the best combination to get better result for
molecular identification of 18S rRNA Cryptosporidium. As a conclusion,
accurate and proper concentration or volume of each PCR chemical components is
essential for molecular identification of 18S rRNA Cryptosporidium gene.
In future studies, study on gradient temperature parameters of PCR run can be
included to study the chemical nature of amplified genes either in
denaturation, annealing or extension steps.
Keywords:
chemical, Cryptosporidium, polymerase
chain reaction, 18S ribosomal RNA gene
Abstrak
Gen 18S
ribosomal RNA adalah gen universal yang berfungsi sebagai penanda genetik umum
untuk pengenalpastian spesies mikroorganisma termasuk parasit. Cryptosporidium mempunyai gen 18S rRNA
yang berlainan daripada spesies berbeza dalam genus yang sama. Dalam kajian
ini, tindak balas berantai polymerase atau PCR digunakan untuk mengkaji
komponen kimia susun atur PCR dalam amplifikasi gen 18S rRNA bagi parasit ini. Cryptosporidium telah diambil dari
sampel air sungai dan disahkan kehadirannya menggunakan pengesanan immunopendaflour
terhadap parasit ini. Sampel air yang diambil mengandungi Cryptosporidium yang kemudiannya diteruskan untuk pengekstrakan
genomik DNA sebelum peringkat PCR. Komponen kimia PCR yang terdiri daripada
MgCI2, deoksinukleotida trifosfat (dNTPs), polimerase, air yang
bebas DNase, primer umum dan larutan penimbal PCR telah dikaji dalam isipadu
dan kepekatan yang berbeza. Setiap komponen kimia PCR dioptimakan secara
berbeza dalam menghasilkan isipadu akhir 20 uL bagi setiap tindak balas. Nilai
julat komponen kimia PCR terdiri daripada MgCI2 (0.1 µM-0.5 µM), dNTPs
(50-250 mM), air bebas DNase (5-10 µL), polimerase (0.2-0.5 U) dan primer
primer umum (2-20 µM). Keputusan menunjukkan bahawa 0.2 µM MgCI2,
100 mM dNTPs, air bebas DNase yang kurang daripada 10 µL, 0.5 U polimerase dan
10 mM primer umum adalah kombinasi terbaik untuk mendapatkan dapatan yang lebih
baik bagi pengenalpastian molekul Cryptosporidium
18S rRNA. Kesimpulannya, kepekatan atau isipadu yang tepat dan sesuai bagi
setiap komponen kimia PCR adalah penting untuk pengenalpastian molekul gen Cryptosporidium 18S rRNA. Bagi kajian
masa depan, kajian ke atas kecerunan parameter suhu untuk menjalani PCR boleh
dimasukkan untuk mengkaji sifat semulajadi kimia pada gen yang diamplifikasi
untuk peringkat-peringkat penyahaslian, pelekatan atau penyambungan.
Kata kunci: kimia, Cryptosporidium, tindak balas rantai polimerase,
gen 18S ribosomal RNA
References
1.
Shrivastava, A. K.,
Kumar, S., Smith, W. A. and Sahu, P. S. (2017). Revisiting the global problem
of cryptosporidiosis and recommendations. Tropical
Parasitology, 7(1): 8.
2.
Huang, C., Hu, Y.,
Wang, L., Wang, Y., Li, N., Guo, Y., Feng, Y. and Xiao, L. (2017).
Environmental transport of emerging human-pathogenic Cryptosporidium species and subtypes through combined sewer
overflow and wastewater. Applied and Environmental
Microbiology, 83(16): AEM-00682.
3.
Sales-Ortells, H.,
Agostini, G. and Medema, G. (2015). Quantification of waterborne pathogens and
associated health risks in urban water. Environmental
Science & Technology, 49(11): 6943-6952.
4.
Adamska, M., Sawczuk,
M., Kolodziejczyk, L. and Skotarczak, B. (2015). Assessment of molecular
methods as a tool for detecting pathogenic protozoa isolated from water bodies.
Journal of Water and Health, 13(4):
953-959.
5.
Zahedi, A.,
Paparini, A., Jian, F., Robertson, I. and Ryan, U. (2016). Public health
significance of zoonotic Cryptosporidium
species in wildlife: critical insights into better drinking water management. International Journal for Parasitology:
Parasites and Wildlife, 5(1): 88-109.
6.
Triviño-Valencia,
J., Lora, F., Zuluaga, J. D. and Gomez-Marin, J. E. (2016). Detection by PCR of
pathogenic protozoa in raw and drinkable water samples in Colombia. Parasitology Research, 115(5):
1789-1797.
7.
Afzan, M. Y.,
Mardhiah, M., Muhammad Razman, A. R., Qamarul Iqmal, A., Sharmeen Nellisa, S.,
Nur Hazirah, H., Najat, H. and Ridhwan, A. W. (2015). The occurrence Cryptosporidium oocysts in selected
rivers and its physical assessments in Kuantan, Pahang. Journal of Applied Science Research, 11(17): 19-25.
8.
Mohd Aiman, B.,
Muhammad Lokman, M. I. and Afzan, M. Y. (2017). First molecular
characterization of Cryptosporidium from three different points of two
main rivers in Kuantan, Malaysia using 18S rRNA gene nested PCR. Asian
Pacific Journal of Tropical Disease, 7(9): 930-934.
9.
Thompson, R. C. A.
and Ash, A. (2016). Molecular epidemiology of Giardia and Cryptosporidium
infections. Infection, Genetics and
Evolution, 40: 315-323.
10.
Richard, R. L.,
Ithoi, I., Abd Majid, M. A., Wan Sulaiman, W. Y., Tan, T. C., Nissapatorn, V.
and Lim, Y. A. L. (2016). Monitoring of waterborne parasites in two drinking
water treatment plants: A study in Sarawak, Malaysia. International Journal of Environmental Research and Public Health,
13(7): 641.
11.
Lim, Y. A., Mahdy,
M. A. and Surin, J. (2013). Unravelling Cryptosporidium
and Giardia in Southeast Asia. In
Parasites and their vectors. Springer, Vienna: pp. 77-102.
12.
Al-Delaimy, A. K.,
Al-Mekhlafi, H. M., Nasr, N. A., Sady, H., Atroosh, W. M., Nashiry, M., Anuar,
T. S., Moktar, N., Lim, Y. A. and Mahmud, R. (2014). Epidemiology of intestinal
polyparasitism among Orang Asli school children in rural Malaysia. PLoS Neglected Tropical Diseases, 8(8):
e3074.
13.
Kumar, T.,
Onichandran, S., Lim, Y. A., Sawangjaroen, N., Ithoi, I., Andiappan, H.,
Salibay, C. C., Dungca, J. Z., Chye, T. T., Sulaiman, W. Y. and Lau, Y. L.
(2014). Comparative study on waterborne parasites between Malaysia and
Thailand: A new insight. The American Journal
of Tropical Medicine and Hygiene, 90(4): 682-689.
14.
Lim, Y. A. L. and
Vythilingam, I. (Eds.). (2014). Parasites and their vectors: A special focus on
Southeast Asia. Springer Science & Business Media.
15.
United States
Environmental Protection Agency (2012). Method 1623.1: Cryptosporidium and
Giardia in water by filtration/IMS/FA. Cincinnati: United States
Environmental Protection Agency. http://www.doc88.com/p-0416866100459.html
[Access online 3 July 2018].
16.
Mahmoudi, M. R.,
Nazemalhosseini-Mojarad, E., Kazemi, B., Haghighi, A., Mirzaei, A.,
Mohammadiha, A., Jahantab, S., Xiao, L. and Karanis, P. (2015). Cryptosporidium genotypes and subtypes
distribution in river water in Iran. Journal
of Water and Health, 13(2): 600-606.
17.
Lee, S. C., Ngui,
R., Tan, T. K., Roslan, M. A., Ithoi, I. and Lim, Y. A. (2014). Aquatic
biomonitoring of Giardia cysts and Cryptosporidium oocysts in peninsular
Malaysia. Environmental Science and
Pollution Research, 21(1): 445-453.
18.
Hall, T. (2011).
BioEdit: An important software for molecular biology. GERF Bulletin Bioscience, 2(1): 60-61.
19.
Kumar, S., Stecher,
G. and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis
version 7.0 for bigger datasets. Molecular
Biology and Evolution, 33(7): 1870-1874.
20.
Zainal Abidin, Z.
A., Abdul Malek, N., Zainuddin, Z. and Chowdhury, A. J. K. (2016). Selective
isolation and antagonistic activity of actinomycetes from mangrove forest of
Pahang, Malaysia. Frontiers in Life
Science, 9(1): 24-31.
21.
Ghani, N. A. A. A.,
Othman, N. and Baharudin, M. K. H. (2013). Study on characteristics of sediment
and sedimentation rate at Sungai Lembing, Kuantan, Pahang. Procedia Engineering, 53: 81-92.
22.
Ghani, N. A. A.,
Mohamad, N. A. and Hui, T. W. (2016). Rainfall analysis to determine the potential
of rainwater harvesting site in Kuantan, Pahang. ARPN Journal of Engineering
Applied Science, 11(11):
7264-7268.
23.
Alshaebi, F. Y.,
Yaacob, W. Z. W., Samsudin, A. R. and Alsabahi, E. (2009). Risk assessment at
abandoned tin mine in Sungai Lembing, Pahang, Malaysia. Electronic Journal of Geotechnical Engineering, 14: 1-9.
24.
Le Blancq, S. M.,
Khramtsov, N. V., Zamani, F., Upton, S. J. and Wu, T. W. (1997). Ribosomal RNA
gene organization in Cryptosporidium
parvum. Molecular and Biochemical Parasitology,
90(2): 463-478.
25.
Xiao, L.,
Escalante, L., Yang, C., Sulaiman, I., Escalante, A. A., Montali, R. J., Fayer,
R. and Lal, A. A. (1999). Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene
locus. Applied and Environmental
Microbiology, 65(4): 1578-1583.
26.
Stenger, B. L.,
Clark, M. E., Kváč, M., Khan, E., Giddings, C. W., Dyer, N. W., Schultz, J. L.
and McEvoy, J. M. (2015). Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern
chipmunks (Tamias striatus). Infection, Genetics and Evolution, 32:
113-123.
27.
Ikarashi, M.,
Fukuda, Y., Honma, H., Kasai, K., Kaneta, Y. and Nakai, Y. (2013). First
description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type.
Veterinary Parasitology, 196 (1-2):
220-224.
28.
Jellison, K. L.,
Distel, D. L., Hemond, H. F. and Schauer, D. B. (2004). Phylogenetic analysis
of the hypervariable region of the 18S rRNA gene of Cryptosporidium oocysts in feces of Canada geese (Branta canadensis): evidence for five
novel genotypes. Applied and
Environmental Microbiology, 70 (1): 452-458.
29.
Ruecker, N. J.,
Matsune, J. C., Wilkes, G., Lapen, D. R., Topp, E., Edge, T. A., Sensen, C. W.,
Xiao, L. and Neumann, N. F. (2012). Molecular and phylogenetic approaches for
assessing sources of Cryptosporidium
contamination in water. Water Research,
46(16): 5135-5150.
30.
Yang, B., Wang, Y.
and Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in
16S rRNA genes in phylogenetic analysis. BMC
Bioinformatics, 17(1): 135.
31.
Xiao, L., Limor, J.
R., Li, L., Morgan, U., Thompson, R. C. and Lal, A. A. (1999). Presence of
heterogeneous copies of the small subunit rRNA gene in Cryptosporidium parvum human and marsupial genotypes and Cryptosporidium felis. The Journal of Eukaryotic Microbiology,
46(5): 44S.