Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 423 - 435

DOI: 10.17576/mjas-2019-2303-06

 

 

VALIDATION ON CARBON DIOXIDE HYDRATE FORMATION THROUGH ANALYSIS ON THE SOLUBILITY OF CO2 IN WATER USING HENRY’S LAW AND THE EXPERIMENTAL PRESSURE-TIME CURVE

 

(Mengesahkan Pembentukan Hidrat Karbon Dioksida Melalui Kajian Terhadap Kadar Keterlarutan CO2 di dalam Air Menggunakan Hukum Henry dan Graf Tekanan-Masa)

 

Mohd Hafiz Abu Hassan1*, Colin Edwards Snape2, Lee Stevens2

 

1Faculty of Science and Technology,

Islamic Science University of Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

2Cleaner Fossil Energy and Carbon Capture Technologies Research Group, Faculty of Engineering,

University of Nottingham, NG7 2TU Nottingham, United Kingdom

 

*Corresponding author:  mhafiz.a.h@usim.edu.my

 

 

Received: 21 September 2017; Accepted: 3 May 2019

 

 

Abstract

A rise of 2 oC in the Earth’s temperature is likely to occur when the concentration of carbon dioxide (CO2) in the atmosphere reaches approximately 450 ppm. CO2 emissions are closely related to the continual use of fossil fuels. In order to make fossil fuels sustainable, carbon capture and storage (CCS) is required to reduce CO2 emissions. CO2 hydrate (CO2:6H2O) formation has been investigated as a way to capture CO2. The formation of hydrate in this work was experimentally investigated in batch mode inside a vertical fixed-bed reactor (FBR), also known as high-pressure volumetric analyser (HPVA). Standard silica gel with an average particle size of 200–500 µm, mean pore size of 5.14 nm, a pore volume of 0.64 cm3/g, and a surface area of 499 m2/g was used as a porous medium. The presence of hydrate in FBR was justified by using graphic methods. The solubility of CO2 in water using Henry’s law and the experimental pressure–time (P-t) curve were analysed to determine the formation of hydrate. Hydrate formation was confirmed when the mole fraction of CO2 dissolved in water exceeded the Henry’s law value as well as a two-stage pressure drop in the experimental P-t curve.

 

Keywords:  greenhouse effect, carbon dioxide hydrate, silica gel, Henry’s law, pressure-time curve

 

Abstrak

Kenaikan suhu bumi sebanyak 2 oC berkemungkinan terjadi apabila kandungan karbon dioksida di persekitaran mencapai lebih kurang 450 ppm. Pembebasan CO2 berkait rapat dengan penggunaan bahan api fosil yang berterusan. Bagi menghasilkan bahan api fosil yang mampan, simpanan dan perangkap karbon (CCS) diperlukan untuk mengurangi pelepasan CO2. Formasi CO2 hidrat telah dikaji untuk memerangkap CO2. Pembentukan hidrat telah dikaji untuk memerangkap karbon dioksida melalui eksperimen yang dijalankan menggunakan reaktor (FBR), juga dikenali sebagai penganalisa volumetrik tekanan tinggi (HPVA). Gel silika dengan purata saiz 200–500 µm, purata diameter liang 5.14 nm, isipadu liang 0.64 cm3/g, dan luas permukaan 499 m2/g telah digunakan sebagai medium untuk pembentukan hidrat. Pembentukan hidrat di dalam reaktor disahkan melalui kaedah analisis graf. Kadar keterlarutan CO2 di dalam air dan graf tekanan-masa dikaji untuk menentukan pembentukan hidrat. Pembentukan hidrat disahkan apabila bilangan mol CO2 yang larut di dalam air melebihi nilai hukum Henry dan juga dua peringkat penurunan tekanan dapat dilihat dalam lengkung experimen P-t.

 

Kata kunci:  kesan rumah hijau, hidrat karbon dioksida, gel silica, hukum Henry, graf tekanan-masa

 

References

1.       Caitlyn, K. (2014). Climate change: Atmospheric carbon dioxide. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. [Access online 20 January 2015].

2.       Biello, D. (2013). 400 ppm: Carbon dioxide in the atmosphere reaches prehistoric levels. http://blogs.scientificamerican.com/observations/2013/05/09. [Access online 20 January 2015].

3.       Kunze, C. and Spliethoff, H. (2012). Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants. Applied Energy, 94: 109-116.

4.       IEA (2008). Energy technology perspectives. OECD/IEA Publications 9, Paris: pp. 55-57.

5.       Metz, B., Davidson, O., Coninck, H. D., Loos, M. and Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, New York pp. 109-110.

6.       D’Alessandro, D. M., Smit, B and Long, J. R. (2010). Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition, 49: 6058-6082.

7.       Zheng, J., Lee, Y. K., Babu, P., Zhang, P. and Linga, P. (2016). Impact of fixed bed reactor orientation, liquid saturation, bed volume and temperature on the clathrate hydrate process for pre-combustion capture. Journal of Natural Gas Science and Engineering, 35:1499-1510.

8.       Babu, P., Ho, C.Y., Kumar, R. and Linga, P. (2014). Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture. Energy, 70: 664-673.

9.       Linga, P., Kumar, R. and Englezos, P. (2007). Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 62: 4268-4276.

10.    McCallum, S. D., Riestenberg, D. E., Zatsepina, O. Y. and Phelps, T. J. (2005). Effect of pressure vessel size on the formation of gas hydrates. Journal of Petroleum Science & Engineering, 56: 54-64.

11.    IEA Clean Coal Centre (2011). Pre-combustion capture of CO2 in IGCC plants No 11/14, London: pp.11-14.

12.    Babu, P., Kumar, R. and Linga, P. (2013). Pre-combustion capture of CO2 in a fixed bed reactor using the Clathrate hydrate process. Energy, 50: 364-373.

13.    Carroll, J. (2009). Natural gas hydrates (a guide for engineers). Elsevier Inc., Burlington: pp. 1-15.

14.    Adeyemo, A., Kumar, R., Linga, P., Ripmeester., J. and Englezos, P. (2010). Capture of CO2 from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. International Journal of Greenhouse Gas Control, 4: 478-485.

15.    Kumar, A., Sakpal, T., Linga, P. and Kumar, R. (2013). Influence of contact medium and surfactants on carbon dioxide Clathrate hydrate kinetics. Fuel, 105: 664-671.

16.    Park, S., Lee, S., Lee, Y., Lee, Y. and Seo, Y. (2013). Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. International Journal of Greenhouse Gas Control, 14: 193-199.

17.    Kang, S. P., Lee, J. and Seo, Y. (2013). Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure. Chemical Engineering Journal, 218: 126-132.

18.    Mekala, P., Busch, M., Mech, D. and Patel, R. S. (2014). Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration. Journal of Petroleum Science & Engineering, 122: 1-9.

19.    Xiaoya, Z., Jianwei, D.U., Deqing, L., Shuanshi, F. and Cuiping, T. (2009). Influence of A-type zeolite on methane hydrate formation. Chinese Journal of Chemical Engineering, 17: 854-859.

20.    Zhong, D. L., Li, Z., Lu, Y. Y., Wang, J. L., Yan, J. and Qing, S. L. (2016). Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve. Industrial & Engineering Chemistry Research, 55(29): 7973-7980.

21.    Mohd Hafiz, A. H., Snape, C. E. and Stevens, L. (2018). Bed height of zeolite affected CO2 hydrate formation using high pressure volumetric analyser. Asian Journal of Chemistry, 30(10): 2269-2272.

22.    Yang, M., Song, Y., Liu, W., Zhao, J., Ruan, X., Jiang, L. and Li, Q. (2013). Effects of additive mixtures (THF/SDS) on carbon dioxide hydrate formation and dissociation in porous media. Chemical Engineering Science, 90: 69-76.

23.    Mohd Hafiz, A.H., Snape, C.E. and Stevens, L. (2018b). The effect of silica particle sizes and promoters to equilibrium moisture content for CO2 hydrate formation in HPVA. AIP Conference Proceedings, 1972: 030019.

24.    Babu, P., Linga, P., Kumar, R. and Englezos, P., (2015). A review of the hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy, 85: 261-279.

25.    Babu, P., Kumar, R. and Linga, P. (2013b). A new porous material to enhance the kinetics of clathrate process: Application to precombustion carbon dioxide capture. Environmental Science Technology, 47: 13191-13198.

26.    Skarstrom, C. W. (1960). Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent, No: 2944627.

27.    Grande, C. A. (2012). Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering Science, 2012: 1-13.

28.    Tang, J., Zeng, D., Wang, C., Chen, Y., He, L. and Cai, N. (2013). Study on the influence of SDS and THF on hydrate-based gas separation performance. Chemical Engineering Research and Design, 91: 1777-1782.

29.    Servio, P. and Englezos, P. (2001). Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate. Fluid Phase Equilibria, 190: 127-134.

30.    Dawson, R., Stevens, L. A., Williams, O. S. A., Wang, W., Carter, B. O., Sutton, S., Drage, T. C., Blanc, F., Adams, D. J. and Cooper, A. I. (2014). Dry bases: carbon dioxide capture using alkaline dry water. Energy & Environmental Science, 7: 1786-1791.

31.    Mohd Hafiz, A. H., Snape, C. E. and Stevens, L. (2017). Enhance CO2 hydrate formation inside the HPVA by vigorous stirring during sample preparation. Proceeding of Postgraduate Seminar on Science and Technology, 7th November 2016, Nilai, Malaysia.

32.    Carrol, J., Slupsky, J. and Mather, E. (1991). The solubility of CO2 in water at low pressure. Journal of Physic and Chemistry, 20: 1201-1209.

33.    Sloan, E. D. and Koh, C. A. (2008). Clathrate hydrates of natural gases. Taylor & Francis Group, Boca Raton: pp. 130-138.

34.    Diamond, L. W. and Akinfiev, N. N. (2003). Solubility of CO2 in water from -1.5 to 100 oC and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria, 208: 265-290.

35.    Babu, P., Ong, H. W. N. and Linga, P. (2016). A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy, 94: 431-442.

 

 

 




Previous                    Content                    Next