Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 423 - 435
DOI:
10.17576/mjas-2019-2303-06
VALIDATION ON CARBON DIOXIDE
HYDRATE FORMATION THROUGH ANALYSIS ON THE SOLUBILITY OF CO2 IN WATER
USING HENRY’S LAW AND THE EXPERIMENTAL PRESSURE-TIME CURVE
(Mengesahkan Pembentukan
Hidrat Karbon Dioksida Melalui Kajian Terhadap Kadar Keterlarutan CO2 di dalam Air Menggunakan Hukum Henry dan Graf Tekanan-Masa)
Mohd Hafiz Abu Hassan1*, Colin Edwards Snape2,
Lee Stevens2
1Faculty of Science and Technology,
Islamic Science University of
Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
2Cleaner Fossil Energy and Carbon Capture Technologies Research
Group, Faculty of Engineering,
University of Nottingham, NG7
2TU Nottingham, United Kingdom
*Corresponding author: mhafiz.a.h@usim.edu.my
Received: 21 September 2017; Accepted: 3 May 2019
Abstract
A rise
of 2 oC in the Earth’s temperature is likely to occur when the
concentration of carbon dioxide (CO2) in the atmosphere reaches
approximately 450 ppm. CO2 emissions are closely related to the
continual use of fossil fuels. In order to make fossil fuels sustainable,
carbon capture and storage (CCS) is required to reduce CO2
emissions. CO2 hydrate (CO2:6H2O) formation
has been investigated as a way to capture CO2. The formation of
hydrate in this work was experimentally investigated in batch mode inside a
vertical fixed-bed reactor (FBR), also known as high-pressure volumetric
analyser (HPVA). Standard silica gel with an average particle size of 200–500
µm, mean pore size of 5.14 nm, a pore volume of 0.64 cm3/g, and a
surface area of 499 m2/g was used as a porous medium. The presence
of hydrate in FBR was justified by using graphic methods. The solubility of CO2
in water using Henry’s law and the experimental pressure–time (P-t) curve were
analysed to determine the formation of hydrate. Hydrate formation was confirmed
when the mole fraction of CO2 dissolved in water exceeded the
Henry’s law value as well as a two-stage pressure drop in the experimental P-t
curve.
Keywords: greenhouse effect, carbon dioxide hydrate,
silica gel, Henry’s law, pressure-time curve
Abstrak
Kenaikan suhu bumi sebanyak 2 oC
berkemungkinan terjadi apabila kandungan karbon dioksida di persekitaran
mencapai lebih kurang 450 ppm. Pembebasan CO2 berkait rapat dengan
penggunaan bahan api fosil yang berterusan. Bagi menghasilkan bahan api fosil
yang mampan, simpanan dan perangkap karbon (CCS) diperlukan untuk mengurangi
pelepasan CO2. Formasi CO2 hidrat telah dikaji untuk
memerangkap CO2. Pembentukan hidrat telah dikaji untuk memerangkap
karbon dioksida melalui eksperimen yang dijalankan menggunakan reaktor (FBR),
juga dikenali sebagai penganalisa volumetrik tekanan tinggi (HPVA). Gel silika
dengan purata saiz 200–500 µm, purata diameter liang 5.14 nm, isipadu liang
0.64 cm3/g, dan luas permukaan 499 m2/g telah digunakan
sebagai medium untuk pembentukan hidrat. Pembentukan hidrat di dalam reaktor
disahkan melalui kaedah analisis graf. Kadar keterlarutan CO2 di
dalam air dan graf tekanan-masa dikaji untuk
menentukan pembentukan hidrat. Pembentukan hidrat disahkan apabila bilangan
mol CO2 yang larut di dalam air melebihi nilai hukum Henry dan juga
dua peringkat penurunan tekanan dapat dilihat dalam lengkung experimen P-t.
Kata kunci: kesan rumah hijau, hidrat karbon dioksida, gel silica, hukum
Henry, graf tekanan-masa
References
1.
Caitlyn,
K. (2014). Climate change: Atmospheric carbon dioxide.
https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
[Access online 20 January 2015].
2.
Biello,
D. (2013). 400 ppm: Carbon dioxide in the atmosphere reaches prehistoric
levels. http://blogs.scientificamerican.com/observations/2013/05/09. [Access
online 20 January 2015].
3.
Kunze,
C. and Spliethoff, H. (2012). Assessment of oxy-fuel, pre- and
post-combustion-based carbon capture for future IGCC plants. Applied Energy, 94: 109-116.
4.
IEA
(2008). Energy technology perspectives. OECD/IEA Publications 9, Paris: pp.
55-57.
5.
Metz,
B., Davidson, O., Coninck, H. D., Loos, M. and Meyer, L. (2005). IPCC special
report on carbon dioxide capture and storage. Intergovernmental Panel on
Climate Change, New York pp. 109-110.
6.
D’Alessandro,
D. M., Smit, B and Long, J. R. (2010). Carbon dioxide capture: Prospects for
new materials. Angewandte Chemie International
Edition, 49: 6058-6082.
7.
Zheng,
J., Lee, Y. K., Babu, P., Zhang, P. and Linga, P. (2016). Impact of fixed bed
reactor orientation, liquid saturation, bed volume and temperature on the
clathrate hydrate process for pre-combustion capture. Journal of Natural Gas Science and Engineering, 35:1499-1510.
8.
Babu,
P., Ho, C.Y., Kumar, R. and Linga, P. (2014). Enhanced kinetics for the
clathrate process in a fixed bed reactor in the presence of liquid promoters
for pre-combustion carbon dioxide capture. Energy,
70: 664-673.
9.
Linga,
P., Kumar, R. and Englezos, P. (2007). Gas hydrate formation from
hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 62:
4268-4276.
10.
McCallum,
S. D., Riestenberg, D. E., Zatsepina, O. Y. and Phelps, T. J. (2005). Effect of
pressure vessel size on the formation of gas hydrates. Journal of Petroleum Science & Engineering, 56: 54-64.
11.
IEA
Clean Coal Centre (2011). Pre-combustion capture of CO2 in IGCC
plants No 11/14, London: pp.11-14.
12.
Babu,
P., Kumar, R. and Linga, P. (2013). Pre-combustion capture of CO2 in
a fixed bed reactor using the Clathrate hydrate process. Energy, 50: 364-373.
13.
Carroll,
J. (2009). Natural gas hydrates (a guide for engineers). Elsevier Inc.,
Burlington: pp. 1-15.
14.
Adeyemo,
A., Kumar, R., Linga, P., Ripmeester., J. and Englezos, P. (2010). Capture of
CO2 from flue or fuel gas mixtures by clathrate crystallization in a
silica gel column. International Journal
of Greenhouse Gas Control, 4: 478-485.
15.
Kumar,
A., Sakpal, T., Linga, P. and Kumar, R. (2013). Influence of contact medium and
surfactants on carbon dioxide Clathrate hydrate kinetics. Fuel, 105: 664-671.
16.
Park,
S., Lee, S., Lee, Y., Lee, Y. and Seo, Y. (2013). Hydrate-based pre-combustion
capture of carbon dioxide in the presence of a thermodynamic promoter and
porous silica gels. International Journal
of Greenhouse Gas Control, 14: 193-199.
17.
Kang,
S. P., Lee, J. and Seo, Y. (2013). Pre-combustion capture of CO2 by
gas hydrate formation in silica gel pore structure. Chemical Engineering Journal, 218: 126-132.
18.
Mekala,
P., Busch, M., Mech, D. and Patel, R. S. (2014). Effect of silica sand size on
the formation kinetics of CO2 hydrate in porous media in the
presence of pure water and seawater relevant for CO2 sequestration. Journal of Petroleum Science &
Engineering, 122: 1-9.
19.
Xiaoya,
Z., Jianwei, D.U., Deqing, L., Shuanshi, F. and Cuiping, T. (2009). Influence
of A-type zeolite on methane hydrate formation. Chinese Journal of Chemical Engineering, 17: 854-859.
20.
Zhong,
D. L., Li, Z., Lu, Y. Y., Wang, J. L., Yan, J. and Qing, S. L. (2016).
Investigation of CO2 capture from a CO2 + CH4 gas
mixture by gas hydrate formation in the fixed bed of a molecular sieve. Industrial & Engineering Chemistry
Research, 55(29): 7973-7980.
21.
Mohd
Hafiz, A. H., Snape, C. E. and Stevens, L. (2018). Bed height of zeolite
affected CO2 hydrate formation using high pressure volumetric
analyser. Asian Journal of Chemistry,
30(10): 2269-2272.
22.
Yang,
M., Song, Y., Liu, W., Zhao, J., Ruan, X., Jiang, L. and Li, Q. (2013). Effects
of additive mixtures (THF/SDS) on carbon dioxide hydrate formation and
dissociation in porous media. Chemical
Engineering Science, 90: 69-76.
23.
Mohd
Hafiz, A.H., Snape, C.E. and Stevens, L. (2018b). The effect of silica particle
sizes and promoters to equilibrium moisture content for CO2 hydrate
formation in HPVA. AIP Conference
Proceedings, 1972: 030019.
24.
Babu,
P., Linga, P., Kumar, R. and Englezos, P., (2015). A review of the
hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion
capture. Energy, 85: 261-279.
25.
Babu,
P., Kumar, R. and Linga, P. (2013b). A new porous material to enhance the
kinetics of clathrate process: Application to precombustion carbon dioxide
capture. Environmental Science Technology,
47: 13191-13198.
26.
Skarstrom,
C. W. (1960). Method and apparatus for fractionating gaseous mixtures by
adsorption. US Patent, No: 2944627.
27.
Grande,
C. A. (2012). Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering Science, 2012:
1-13.
28.
Tang,
J., Zeng, D., Wang, C., Chen, Y., He, L. and Cai, N. (2013). Study on the
influence of SDS and THF on hydrate-based gas separation performance. Chemical Engineering Research and Design,
91: 1777-1782.
29.
Servio,
P. and Englezos, P. (2001). Effect of temperature and pressure on the
solubility of carbon dioxide in water in the presence of gas hydrate. Fluid Phase Equilibria, 190: 127-134.
30.
Dawson,
R., Stevens, L. A., Williams, O. S. A., Wang, W., Carter, B. O., Sutton, S.,
Drage, T. C., Blanc, F., Adams, D. J. and Cooper, A. I. (2014). Dry bases:
carbon dioxide capture using alkaline dry water. Energy & Environmental Science, 7: 1786-1791.
31.
Mohd
Hafiz, A. H., Snape, C. E. and Stevens, L. (2017). Enhance CO2
hydrate formation inside the HPVA by vigorous stirring during sample
preparation. Proceeding of Postgraduate
Seminar on Science and Technology, 7th November 2016, Nilai,
Malaysia.
32.
Carrol,
J., Slupsky, J. and Mather, E. (1991). The solubility of CO2 in
water at low pressure. Journal of Physic
and Chemistry, 20: 1201-1209.
33.
Sloan,
E. D. and Koh, C. A. (2008). Clathrate hydrates of natural gases. Taylor &
Francis Group, Boca Raton: pp. 130-138.
34.
Diamond,
L. W. and Akinfiev, N. N. (2003). Solubility of CO2 in water from
-1.5 to 100 oC and from 0.1 to 100 MPa: Evaluation of literature
data and thermodynamic modelling. Fluid
Phase Equilibria, 208: 265-290.
35.
Babu,
P., Ong, H. W. N. and Linga, P. (2016). A systematic kinetic study to evaluate
the effect of tetrahydrofuran on the clathrate process for pre-combustion capture
of carbon dioxide. Energy, 94:
431-442.