Malaysian Journal of Analytical
Sciences Vol 23 No 3 (2019): 390 - 400
DOI:
10.17576/mjas-2019-2303-03
HIDROGEL BERSIFAT PEKA TERHADAP RANGSANGAN SUHU UNTUK
PENJERAPAN DAN PEMBEBASAN DADAH
(Hydrogel with Thermo-Responsive Behavior for Drug
Adsorption and Release)
Teow Yeit Haan1,2* and Kushalini Rames2
1Research Centre for Sustainable Process Technology
(CESPRO), Faculty of Engineering and Built Environment
2Chemical Engineering Programme, Faculty of Engineering
and Built Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: yh_teow@ukm.edu.my
Received: 22
April 2019; Accepted: 12 May 2019
Abstrak
Dalam kajian
ini, hidrogel bersifat peka terhadap rangsangan suhu disintesis sebagai media
penyampaian dadah. Prestasi hidrogel yang disintesis dikaji dengan menggunakan
peratusan asid sitrik yang berbeza iaitu 5%, 10%, dan 15%. Penggunaan asid
sitrik yang banyak membawa kepada ikatan yang kuat sesama polimer, seterusnya
meningkatkan peratus transmisi kumpulan berfungsi O-H dan kehidrofilikan
hidrogel. Maka, molekul aspirin yang mempunyai kumpulan berfungsi asid
karboksilik bersifat polar akan lebih cenderung dijerap pada permukaan hidrogel
yang disintesis dengan menggunakan 15% asid sitrik melalui ikatan hidrogen. Di
samping itu, rangkaian polimer yang padat lebih peka terhadap rangsangan suhu.
Oleh itu, hidrogel yang disintesis dengan menggunakan 15% asid sitrik adalah
lebih berkesan untuk membebaskan molekul aspirin yang dijerap padanya. Dalam
kajian penjerapan dan pembebasan dadah yang dijalankan, keputusan yang tercapai
didapati lebih menepati model Langmuir dan model Kinetik Pseudo pertama. Model
Langmuir menyatakan bahawa penjerapan aspirin hanya melibatkan satu lapisan di
permukaan hidrogel. Setelah penjerapan berlaku pada sesuatu tempat di
permukaaan hidrogel, tiada lagi penjerapan berterusan yang akan berlaku.
Manakala model Kinetik Pseudo pertama menerangkan bahawa penjerapan yang
berlaku adalah melalui mekanisme fizikal, molekul aspirin akan dijerap atas
permukaan hidrogel tanpa berlakunya tindak balas dengan permukaan hidrogel.
Kata kunci: hidrogel, rangsangan suhu, penjerapan dadah,
pembebasan dadah, suhu badan
Abstract
In this
study, hydrogel with thermo-responsive behavior was synthesized as a medium for
drug delivery. Performance of synthesized hydrogel was studied using a
different percentage of citric acid at 5%, 10%, and 15%. The use of a large
amount of citric acid leads to a strong polymer bond, thus increasing the
percentage of O-H functional group subsenquently hydrophilicity of hydrogel.
Therefore, polar aspirin molecules with functional group of carboxylic acid are
more likely to be adsorbed on the surface of the hydrogel synthesized using 15%
citric acid via hydrogen bonding. In
addition, dense polymer chain is more responsive to temperature change. Hence,
hydrogel synthesized using 15% citric acid is more effective to release the
adsorbed aspirin molecules. In the drug adsorption and release study, the
results achieved were fitted closely with the Langmuir model and the Pseudo
first kinetic model. Langmuir model implied that aspirin adsorption involves
only one layer on the surface of the hydrogel. After adsorption occurs on the
hydrogel surface, no further assorption will occur. While the Pseudo first
kinetic model supported that the adsorption occurs through physical mechanisms
where aspirin molecules will be adsorbed on the surface of the hydrogel without
the occurrence of reaction.
Keywords: hydrogel, thermo-responsive, drug adsorption, drug
release, body temperature
Rujukan
1.
Rosiak, J. M., and Yoshii, F. (1999). Hydrogels and their medical applications. Nuclear Instruments and Methods in Physics
Research, Section B: Beam Interactions with Materials and Atoms, 151(1–4): 56–64.
2.
Yahia, L. H.
(2017). History and applications of hydrogels. Journal of Biomedical Sciencies, 4(2): 13.
3.
Ahmed, E. (2015).
Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2):
105-121.
4.
Biondi, M.,
Borzacchiello, A., Mayol, L. and Ambrosio, L. (2015). Nanoparticle-integrated hydrogels
as multifunctional composite materials for biomedical applications. Gels, 1(2): 162-178.
5.
Heng, P. W. S.
(2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9): 833-833.
6.
Fan, H. T., Shi, L.
Q., Shen, H., Chen, X. and Xie, K. P. (2016). Equilibrium, isotherm, kinetic and
thermodynamic studies for removal of tetracycline antibiotics by adsorption
onto hazelnut shell derived activated carbons from aqueous media. RSC Advances, 6(111): 109983-109991.
7.
Syakirin, M., Mohd,
F. and Nurjaliah, S. (2015). Adsorption of manganese in aqueous solution by steel
slag. Procedia Environmental Sciences,
30: 145-150.
8.
Dada, A. O.,
Olalekan, A. P., Olatunya, A. M. and Dada, O. (2012). Langmuir, Freundlich,
Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+
Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 3(1): 38-45.
9.
Demitri, C., Del
Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A. and Nicolais,
L. (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with
citric acid. Journal of Applied Polymer
Science, 110(4): 2453-2460.
10.
Awada, H.,
Bouatmane, M. and Daneault, C. (2015). High strength paper production based on
esterification of thermomechanical pulp fibers in the presence of poly(vinyl
alcohol). Heliyon, 1(3): e00038.
11.
Tahmasebpoor, M.,
De Martín, L., Talebi, M., Mostoufi, N. and Van Ommen, J. R. (2013). The role of the hydrogen bond
in dense nanoparticle-gas suspensions. Physical
Chemistry, 15(16): 5788-5793.
12.
Bukhari, S. M. H.,
Khan, S., Rehanullah, M., and Ranjha, N. M. (2015). Synthesis and characterization of
chemically cross-linked acrylic acid/gelatin hydrogels: Effect of pH and
composition on swelling and drug release. International
Journal of Polymer Science, 20(15): 1-15.
13.
Saputra, A. H.,
Hapsari, M., Pitaloka, A. B. and Wulan, P. P. D. K. (2015). Synthesis and
characterization of hydrogel from cellulose derivatives of water hyacinth (Eichhornia crassipes) through chemical
cross-linking method by using citric acid. Journal
of Engineering Science and Technology, 10: 75-86.
14.
Yuan, Y. and Lee, T. R. (2013). Contact angle and wetting properties. Springer Series in Surface Sciences,
51(1): 3–34.
15.
Du, J., Wu, Q.,
Zhong, S., Gu, X., Liu, J., Guo, H. and Zou, J. (2015). Effect of hydroxyl
groups on hydrophilic and photocatalytic activities of rare earth doped
titanium dioxide thin films. Journal of
Rare Earths, 33(2): 148-153.
16.
Mitra, A. and Dey, B. (2011). Chitosan microspheres in novel drug delivery systems. Indian Journal of Pharmaceutical Sciences,73(4):
355-366.
17.
Chen, J. J., Ahmad,
A. L. and Ooi, B. S. (2013). Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels
for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic
studies. Journal of Environmental
Chemical Engineering, 1(3): 339-348.
18.
Deruiter, J.
(2005). Carboxylic acid structure and chemistry : Part 1. Springer, pp. 1–11.
19.
Ibrahim, M. B. and Sani, S. (2014). Comparative isotherms studies on adsorptive removal of
congo red from wastewater by watermelon rinds and neem-tree leaves. Open Journal of Physical Chemistry, 04(04):
139-146.
20.
Simonin, J. P.
(2016). On the comparison of pseudo-first order and pseudo-second order rate
laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300: 254-263.
21.
Plazinski, W.,
Dziuba, J. and Rudzinski, W. (2013). Modeling of sorption kinetics: The pseudo-second
order equation and the sorbate intraparticle diffusivity. Adsorption, 19(5): 1055-1064.