Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 390 - 400

DOI: 10.17576/mjas-2019-2303-03

 

 

 

HIDROGEL BERSIFAT PEKA TERHADAP RANGSANGAN SUHU UNTUK PENJERAPAN DAN PEMBEBASAN DADAH

 

(Hydrogel with Thermo-Responsive Behavior for Drug Adsorption and Release)

 

Teow Yeit Haan1,2* and Kushalini Rames2

 

1Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment

2Chemical Engineering Programme, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  yh_teow@ukm.edu.my

 

 

Received: 22 April 2019; Accepted: 12 May 2019

 

 

Abstrak

Dalam kajian ini, hidrogel bersifat peka terhadap rangsangan suhu disintesis sebagai media penyampaian dadah. Prestasi hidrogel yang disintesis dikaji dengan menggunakan peratusan asid sitrik yang berbeza iaitu 5%, 10%, dan 15%. Penggunaan asid sitrik yang banyak membawa kepada ikatan yang kuat sesama polimer, seterusnya meningkatkan peratus transmisi kumpulan berfungsi O-H dan kehidrofilikan hidrogel. Maka, molekul aspirin yang mempunyai kumpulan berfungsi asid karboksilik bersifat polar akan lebih cenderung dijerap pada permukaan hidrogel yang disintesis dengan menggunakan 15% asid sitrik melalui ikatan hidrogen. Di samping itu, rangkaian polimer yang padat lebih peka terhadap rangsangan suhu. Oleh itu, hidrogel yang disintesis dengan menggunakan 15% asid sitrik adalah lebih berkesan untuk membebaskan molekul aspirin yang dijerap padanya. Dalam kajian penjerapan dan pembebasan dadah yang dijalankan, keputusan yang tercapai didapati lebih menepati model Langmuir dan model Kinetik Pseudo pertama. Model Langmuir menyatakan bahawa penjerapan aspirin hanya melibatkan satu lapisan di permukaan hidrogel. Setelah penjerapan berlaku pada sesuatu tempat di permukaaan hidrogel, tiada lagi penjerapan berterusan yang akan berlaku. Manakala model Kinetik Pseudo pertama menerangkan bahawa penjerapan yang berlaku adalah melalui mekanisme fizikal, molekul aspirin akan dijerap atas permukaan hidrogel tanpa berlakunya tindak balas dengan permukaan hidrogel.

 

Kata kunci:  hidrogel, rangsangan suhu, penjerapan dadah, pembebasan dadah, suhu badan

 

Abstract

In this study, hydrogel with thermo-responsive behavior was synthesized as a medium for drug delivery. Performance of synthesized hydrogel was studied using a different percentage of citric acid at 5%, 10%, and 15%. The use of a large amount of citric acid leads to a strong polymer bond, thus increasing the percentage of O-H functional group subsenquently hydrophilicity of hydrogel. Therefore, polar aspirin molecules with functional group of carboxylic acid are more likely to be adsorbed on the surface of the hydrogel synthesized using 15% citric acid via hydrogen bonding. In addition, dense polymer chain is more responsive to temperature change. Hence, hydrogel synthesized using 15% citric acid is more effective to release the adsorbed aspirin molecules. In the drug adsorption and release study, the results achieved were fitted closely with the Langmuir model and the Pseudo first kinetic model. Langmuir model implied that aspirin adsorption involves only one layer on the surface of the hydrogel. After adsorption occurs on the hydrogel surface, no further assorption will occur. While the Pseudo first kinetic model supported that the adsorption occurs through physical mechanisms where aspirin molecules will be adsorbed on the surface of the hydrogel without the occurrence of reaction.

 

Keywords:  hydrogel, thermo-responsive, drug adsorption, drug release, body temperature

 

Rujukan

1.       Rosiak, J. M., and Yoshii, F. (1999). Hydrogels and their medical applications. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 151(1–4): 56–64.

2.       Yahia, L. H. (2017). History and applications of hydrogels. Journal of Biomedical Sciencies, 4(2): 13.

3.       Ahmed, E. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2): 105-121.

4.       Biondi, M., Borzacchiello, A., Mayol, L. and Ambrosio, L. (2015). Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels, 1(2): 162-178.

5.       Heng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9): 833-833.

6.       Fan, H. T., Shi, L. Q., Shen, H., Chen, X. and Xie, K. P. (2016). Equilibrium, isotherm, kinetic and thermodynamic studies for removal of tetracycline antibiotics by adsorption onto hazelnut shell derived activated carbons from aqueous media. RSC Advances, 6(111): 109983-109991.

7.       Syakirin, M., Mohd, F. and Nurjaliah, S. (2015). Adsorption of manganese in aqueous solution by steel slag. Procedia Environmental Sciences, 30: 145-150.

8.       Dada, A. O., Olalekan, A. P., Olatunya, A. M. and Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 3(1): 38-45.

9.       Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A. and Nicolais, L. (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 110(4): 2453-2460.

10.    Awada, H., Bouatmane, M. and Daneault, C. (2015). High strength paper production based on esterification of thermomechanical pulp fibers in the presence of poly(vinyl alcohol). Heliyon, 1(3): e00038.

11.    Tahmasebpoor, M., De Martín, L., Talebi, M., Mostoufi, N. and Van Ommen, J. R. (2013). The role of the hydrogen bond in dense nanoparticle-gas suspensions. Physical Chemistry, 15(16): 5788-5793.

12.    Bukhari, S. M. H., Khan, S., Rehanullah, M., and Ranjha, N. M. (2015). Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: Effect of pH and composition on swelling and drug release. International Journal of Polymer Science, 20(15): 1-15.

13.    Saputra, A. H., Hapsari, M., Pitaloka, A. B. and Wulan, P. P. D. K. (2015). Synthesis and characterization of hydrogel from cellulose derivatives of water hyacinth (Eichhornia crassipes) through chemical cross-linking method by using citric acid. Journal of Engineering Science and Technology, 10: 75-86.

14.    Yuan, Y. and Lee, T. R. (2013). Contact angle and wetting properties. Springer Series in Surface Sciences, 51(1): 3–34.

15.    Du, J., Wu, Q., Zhong, S., Gu, X., Liu, J., Guo, H. and Zou, J. (2015). Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. Journal of Rare Earths, 33(2): 148-153.

16.    Mitra, A. and Dey, B. (2011). Chitosan microspheres in novel drug delivery systems. Indian Journal of Pharmaceutical Sciences,73(4): 355-366.

17.    Chen, J. J., Ahmad, A. L. and Ooi, B. S. (2013). Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 1(3): 339-348.

18.    Deruiter, J. (2005). Carboxylic acid structure and chemistry : Part 1. Springer, pp. 1–11.

19.    Ibrahim, M. B. and Sani, S. (2014). Comparative isotherms studies on adsorptive removal of congo red from wastewater by watermelon rinds and neem-tree leaves. Open Journal of Physical Chemistry, 04(04): 139-146.

20.    Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300: 254-263.

21.    Plazinski, W., Dziuba, J. and Rudzinski, W. (2013). Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption, 19(5): 1055-1064.




Previous                    Content                    Next