Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 383 - 389

DOI: 10.17576/mjas-2019-2303-02

 

 

 

SALICYLATE-BASED PROTIC IONIC LIQUIDS AS A POTENTIAL ANTIOXIDANT

 

(Cecair Ionik Protik Berasaskan Salisilat Berpotensi Sebagai Antioksida)

 

Nur Afiqah Ahmad1, Khairulazhar Jumbri1,2*, Anita Ramli1, Noraini Ghani1,2, Haslina Ahmad3

 

1Department of Fundamental and Applied Science
2Centre of Research in Ionic Liquids (CORIL)

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

3Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  khairulazhar.jumbri@utp.edu.my

 

 

Received: 19 August 2018; Accepted: 20 May 2019

 

 

Abstract

Salicylate-based protic ionic liquids (PILs) were synthesised, characterised and assessed in this study for potential antioxidant in drug design. The synthesised PILs were known as 3-dimethylamino-1-propanol salicylate (3DMAPS) and 3-diethylamino-1-propanol salicylate (3DEAPS). Proton nuclear magnetic resonance (1HNMR), Fourier transformation infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterise the synthesised PILs. Furthermore, the antioxidant activity of the synthesised PILs was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. Both 3DMAPS and 3DEAPS showed a good antioxidant activity compared to parent acid (salicylic acid) as these two compounds could scavenge 20% of DPPH free radical at a concentration of 66.76 ± 0.09 µM and 27.27 ± 0.10 µM, respectively.

 

Keywords:  protic ionic liquids, salicylic acid, radical scavenging, free radical, DPPH assays

 

Abstrak

Cecair ionik protik (PILs) berasaskan salisilat disintesis, dicirikan dan dinilai untuk potensi antioksidan dalam reka bentuk dadah. Dua PILs iaitu 3-dimetilamino-1-propanol salisilat (3DMAPS) dan 3-diethilamino-1-propanol salisilat (3DEAPS) telah berjaya disintesis. Proton resonans magnetik nuklear (1HNMR), spektroskopi transformasi inframerah (FTIR) dan analisis termogravimetrik (TGA) digunakan untuk pencirian PIL yang di sintesis. Tambahan pula, aktiviti antioksidan PIL ditentukan dengan menggunakan ujian radikal bebas 2,2-difenil-1-pikrilhidrazil (DPPH). Kedua-dua 3DMAPS dan 3DEAPS menunjukkan aktiviti antioksidan yang baik berbanding dengan asid induk (asid salisilat) kerana kedua-dua sebatian ini boleh membakar 20% radikal bebas DPPH masing-masing pada kepekatan 66.76 ± 0.09 μM dan 27.27 ± 0.10 μM.

 

Kata kunci:  cecair ionic protik, asid salisilik, perangkap radikal, radikal bebas, ujian DPPH

 

References

1.       Freemantle, M. (2010). An introduction to ionic liquids. Royal Society of Chemistry: pp. 1-2.

2.       Stoimenovski, J., Dean, P. M., Izgorodina, E. I. and MacFarlane, D. R. (2012). Protic pharmaceutical ionic liquids and solids: Aspects of protonics. Faraday Discussions, 154(1): 335-352.

3.       Yang, Z. and Pan, W. (2005). Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37(1): 19-28.

4.       Hayouni, S., Robert, A., Ferlin, N., Amri, H. and Bouquillon, S. (2016). New biobased tetrabutylphosphonium ionic liquids: Synthesis, characterisation and use as a solvent or co-solvent for mild and greener Pd-catalyzed hydrogenation processes. RSC Advances, 6(114): 113583-113595.

5.       Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A. and Rogers, R. D. (2002). Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterisation, and extraction studies. Environmental Science and Technology, 36(11): 2523-2529.

6.       Siodmiak, T., Piotr Marszall, M. and Proszowska, A. (2012). Ionic liquids: A new strategy in pharmaceutical synthesis. Mini-Reviews in Organic Chemistry, 9(2): 203-208.

7.       Greaves, T. L. and Drummond, C. J. (2008). Protic ionic liquids: Properties and applications. Chemistry Reviews, 108(1): 206-237.

8.       Kennedy, D. F. and Drummondt, C. J. (2009). Large aggregated ions found in some protic ionic liquids. Journal of Physical Chemistry B, 113(17): 5690-5693.

9.       Gung, S. T., Sun, I. W., Ou-Yang, W. C., Su, S. G., Lin, M. W., Lai, C. A. and Lin, Y. C. (2012). Synthesis and characterisation of protic ionic liquids containing cyclic amine cations and tetrafluoroborate anion. Journal of the Iranian Chemical Society, 8(1): 149-165.

10.    Yasuda, T. and Watanabe, M. (2013). Protic ionic liquids: Fuel cell applications. MRS Bulletin, 38(7): 560-566.

11.    Stoimenovski, J. and MacFarlane, D. R. (2011). Enhanced membrane transport of pharmaceutically active protic ionic liquids. Chemical Communications, 47(41): 11429-11431.

12.    Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. and Voronkov, M. G. (2014). Pharmacologically active salts and ionic liquids based on 2-hydroxyethylamines, arylchalcogenylacetic acids, and essential metals. Russian Chemical Bulletin, 63(9): 1869-1883.

13.    Pernak, J., Goc, I. and Mirska, I. (2004). Anti-microbial activities of protic ionic liquids with lactate anion. Green Chemistry, 6(7): 323-329.

14.    Randjelović, D., Stojiljković, N., Laketić, D., Ilić, I., Randjelović, N., Veljković, S. and Sokolović, D. (2016). The beneficial biological properties of salicylic acid. Acta Facultatis Medicae Naissensis, 32(4): 259-265.

15.    Brand-Williams, W., Cuvelier, M. E. and Berset, C. L. W. T. (1995). Use of free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25-30.

16.    Jadrijević-Mladar Takac, M. and Vikić Topić D. (2004). FT-IR and NMR spectroscopic studies of salicylic acid derivatives . II . Comparison of 2-hydroxy- and 2 , 4- and 2,5-dihydroxy derivatives. Acta Pharmaceutica, 54(3): 177-191.

17.    Sinsheimer, J. E. and Keuhnelian, A. M. (1966). Nearinfrared spectroscopy of amine salts. Journal of Pharmaceutical Sciences, 55(11): 1240-1244.

18.    Cook, D. (1964). Protonation site in organic bases from Infrared X—H deformation modes. Canadian Journal of Chemistry, 42(10): 2292-2299.

19.    Pavia, D. L., Lampman, G. M. and Kriz, G. S. (2010). Introduction to spectroscopy. Cengage Learning: pp. 370-372.

20.    Puttipipatkhachorn, S., Nunthanid, J., Yamamoto, K. and Peck, G. E. (2001). Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. Journal of Controlled Release, 75(1–2): 143-153.

21.    Kung, K.-H. (2006). Coordination complexes of p-Hydroxybenzoate on Fe oxides. Clays and Clay Minerals, 37(4): 333-340.

22.    Arellano, I. H. J., Guarino, J. G., Paredes, F. U. and Arco, S. D. (2011). Thermal stability and moisture uptake of 1-alkyl-3-methylimidazolium bromide. Journal of Thermal Analysis and Calorimetry, 103(2): 725-730.

23.    Song, Y., Xia, Y. and Liu, Z. (2012). Influence of cation structure on physicochemical and antiwear properties of hydroxyl-functionalized imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Tribology Transactions, 55(6): 738-746.

24.    Montanino, M., Carewska, M., Alessandrini, F., Passerini, S. and Appetecchi, G. B. (2011). The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochimica Acta, 57(1): 153-159.

25.    Oyeyemi, V. B., Keith, J. A. and Carter, E. A. (2014). Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory. Journal of Physical Chemistry A, 118(17): 3039-3050.

26.    Gordon, M. H., Paiva-Martins, F. and Almeida, M. (2001). Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. Journal of Agricultural and Food Chemistry, 49(5): 2480-2485.

 




Previous                    Content                    Next