Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 383 - 389
DOI:
10.17576/mjas-2019-2303-02
SALICYLATE-BASED
PROTIC IONIC LIQUIDS AS A POTENTIAL ANTIOXIDANT
(Cecair Ionik Protik Berasaskan Salisilat Berpotensi
Sebagai Antioksida)
Nur Afiqah Ahmad1,
Khairulazhar Jumbri1,2*, Anita Ramli1, Noraini Ghani1,2,
Haslina Ahmad3
1Department of Fundamental and Applied Science
2Centre of Research in Ionic Liquids (CORIL)
Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
3Department of Chemistry, Faculty of
Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
*Corresponding
author: khairulazhar.jumbri@utp.edu.my
Received: 19
August 2018; Accepted: 20 May 2019
Abstract
Salicylate-based
protic ionic liquids (PILs) were synthesised, characterised and assessed in
this study for potential antioxidant in drug design. The synthesised PILs were
known as 3-dimethylamino-1-propanol salicylate (3DMAPS) and
3-diethylamino-1-propanol salicylate (3DEAPS). Proton nuclear magnetic
resonance (1HNMR), Fourier transformation infrared spectroscopy
(FTIR) and thermogravimetric analysis (TGA) were used to characterise the
synthesised PILs. Furthermore, the antioxidant activity of the synthesised PILs
was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical
assay. Both 3DMAPS and 3DEAPS showed a good antioxidant activity compared to
parent acid (salicylic acid) as these two compounds could scavenge 20% of DPPH
free radical at a concentration of 66.76 ± 0.09 µM and 27.27 ± 0.10 µM,
respectively.
Keywords: protic ionic liquids,
salicylic acid, radical scavenging, free radical, DPPH assays
Abstrak
Cecair ionik protik (PILs)
berasaskan salisilat disintesis, dicirikan dan dinilai untuk potensi
antioksidan dalam reka bentuk dadah. Dua PILs iaitu 3-dimetilamino-1-propanol
salisilat (3DMAPS) dan 3-diethilamino-1-propanol salisilat (3DEAPS) telah
berjaya disintesis. Proton resonans magnetik nuklear (1HNMR),
spektroskopi transformasi inframerah (FTIR) dan analisis termogravimetrik (TGA)
digunakan untuk pencirian PIL yang di sintesis. Tambahan pula, aktiviti
antioksidan PIL ditentukan dengan menggunakan ujian radikal bebas
2,2-difenil-1-pikrilhidrazil (DPPH). Kedua-dua 3DMAPS dan 3DEAPS menunjukkan
aktiviti antioksidan yang baik berbanding dengan asid induk (asid salisilat)
kerana kedua-dua sebatian ini boleh membakar 20% radikal bebas DPPH masing-masing
pada kepekatan 66.76 ± 0.09 μM dan 27.27 ± 0.10 μM.
Kata kunci: cecair ionic protik, asid salisilik, perangkap
radikal, radikal bebas, ujian DPPH
References
1.
Freemantle, M. (2010). An introduction to ionic liquids. Royal Society of Chemistry:
pp. 1-2.
2.
Stoimenovski, J., Dean, P. M., Izgorodina, E. I. and MacFarlane,
D. R. (2012). Protic pharmaceutical ionic liquids and solids: Aspects of
protonics. Faraday Discussions, 154(1):
335-352.
3.
Yang, Z. and Pan, W. (2005). Ionic liquids: Green solvents
for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37(1): 19-28.
4.
Hayouni, S., Robert, A., Ferlin, N., Amri, H. and Bouquillon,
S. (2016). New biobased tetrabutylphosphonium ionic liquids: Synthesis,
characterisation and use as a solvent or co-solvent for mild and greener
Pd-catalyzed hydrogenation processes. RSC Advances, 6(114): 113583-113595.
5.
Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R.,
Sheff, S., Wierzbicki, A. and Rogers, R. D. (2002). Task-specific ionic liquids
incorporating novel cations for the coordination and extraction of Hg2+
and Cd2+: Synthesis, characterisation, and extraction studies. Environmental
Science and Technology, 36(11):
2523-2529.
6.
Siodmiak, T., Piotr Marszall, M. and Proszowska, A. (2012).
Ionic liquids: A new strategy in pharmaceutical synthesis. Mini-Reviews in
Organic Chemistry, 9(2):
203-208.
7.
Greaves, T. L. and Drummond, C. J. (2008). Protic ionic
liquids: Properties and applications. Chemistry Reviews, 108(1): 206-237.
8.
Kennedy, D. F. and Drummondt, C. J. (2009). Large aggregated
ions found in some protic ionic liquids. Journal of Physical Chemistry B,
113(17): 5690-5693.
9.
Gung, S. T., Sun, I. W., Ou-Yang, W. C., Su, S. G., Lin, M.
W., Lai, C. A. and Lin, Y. C. (2012). Synthesis and characterisation of protic
ionic liquids containing cyclic amine cations and tetrafluoroborate anion. Journal
of the Iranian Chemical Society, 8(1):
149-165.
10.
Yasuda, T. and Watanabe, M. (2013). Protic ionic liquids:
Fuel cell applications. MRS Bulletin, 38(7): 560-566.
11.
Stoimenovski, J. and MacFarlane, D. R. (2011). Enhanced
membrane transport of pharmaceutically active protic ionic liquids. Chemical
Communications, 47(41):
11429-11431.
12.
Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. and Voronkov,
M. G. (2014). Pharmacologically active salts and ionic liquids based on
2-hydroxyethylamines, arylchalcogenylacetic acids, and essential metals. Russian
Chemical Bulletin, 63(9):
1869-1883.
13.
Pernak, J., Goc, I. and Mirska, I. (2004). Anti-microbial
activities of protic ionic liquids with lactate anion. Green Chemistry, 6(7): 323-329.
14.
Randjelović, D., Stojiljković, N., Laketić, D., Ilić, I.,
Randjelović, N., Veljković, S. and Sokolović, D. (2016). The beneficial
biological properties of salicylic acid. Acta Facultatis Medicae Naissensis,
32(4): 259-265.
15.
Brand-Williams, W., Cuvelier, M. E. and Berset, C. L. W. T.
(1995). Use of free radical method to evaluate antioxidant activity. LWT -
Food Science and Technology, 28(1):
25-30.
16.
Jadrijević-Mladar Takac, M. and Vikić Topić D. (2004). FT-IR
and NMR spectroscopic studies of salicylic acid derivatives . II . Comparison
of 2-hydroxy- and 2 , 4- and 2,5-dihydroxy derivatives. Acta Pharmaceutica, 54(3):
177-191.
17.
Sinsheimer, J. E. and Keuhnelian, A. M. (1966). Near‐infrared
spectroscopy of amine salts. Journal of Pharmaceutical Sciences, 55(11): 1240-1244.
18.
Cook, D. (1964). Protonation site in organic bases from
Infrared X—H deformation modes. Canadian Journal of Chemistry, 42(10): 2292-2299.
19.
Pavia, D. L., Lampman, G. M. and Kriz, G. S. (2010). Introduction to spectroscopy. Cengage
Learning: pp. 370-372.
20.
Puttipipatkhachorn, S., Nunthanid, J., Yamamoto, K. and Peck,
G. E. (2001). Drug physical state and drug-polymer interaction on drug release
from chitosan matrix films. Journal of Controlled Release, 75(1–2): 143-153.
21.
Kung, K.-H. (2006). Coordination complexes of
p-Hydroxybenzoate on Fe oxides. Clays and Clay Minerals, 37(4): 333-340.
22.
Arellano, I. H. J., Guarino, J. G., Paredes, F. U. and Arco,
S. D. (2011). Thermal stability and moisture uptake of
1-alkyl-3-methylimidazolium bromide. Journal of Thermal Analysis and
Calorimetry, 103(2): 725-730.
23.
Song, Y., Xia, Y. and Liu, Z. (2012). Influence of cation
structure on physicochemical and antiwear properties of hydroxyl-functionalized
imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Tribology
Transactions, 55(6): 738-746.
24.
Montanino, M., Carewska, M., Alessandrini, F., Passerini, S.
and Appetecchi, G. B. (2011). The role of the cation aliphatic side chain
length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochimica
Acta, 57(1): 153-159.
25.
Oyeyemi, V. B., Keith, J. A. and Carter, E. A. (2014). Trends
in bond dissociation energies of alcohols and aldehydes computed with
multireference averaged coupled-pair functional theory. Journal of Physical
Chemistry A, 118(17): 3039-3050.
26.
Gordon, M. H., Paiva-Martins, F. and Almeida, M. (2001).
Antioxidant activity of hydroxytyrosol acetate compared with that of other
olive oil polyphenols. Journal of Agricultural and Food Chemistry, 49(5): 2480-2485.