Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 376 - 383

DOI: 10.17576/mjas-2019-2303-01

 

 

 

Candida rugosa LIPASE IMMOBILIZED ON DIETHYLAMINOETHYL-CELLULOSE (DEAE) FOR ESTERIFICATION OF BUTYL OLEATE

 

(Lipase daripada Candida rugosa Tersekatgerak pada Dietilaminoetil-Selulosa (DEAE) untuk Penghasilan Ester Butil Oleat)

 

Mohd Basyaruddin Abdul Rahman1,2*, Ruhil Naznin Azaman2, Emmy Maryati Omar1,2, Muhammad Alif Mohammad Latif1,2, Emilia Abdulmalek1,2

 

1Integrated Chemical BioPhysics Research, Faculty of Science

2Department of Chemistry, Faculty of Science

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  basya@upm.edu.my

 

 

Received: 19 August 2018; Accepted: 14 May 2019

 

 

Abstract

Lipase from Candida rugosa was immobilized onto diethylaminoethyl-cellulose (DEAE) through physical adsorption method with high percentage of protein absorption obtained at 84%. The lipase-DEAE was used to catalyze the enzymatic esterification of butyl oleate by reacting oleic acid and butanol in hexane. Butyl oleate, an alkylic ester of long-chain fatty acid is now in high demand to produce biodiesel. The effect of reaction temperature, thermostability of the immobilization lipase, stability in organic solvent, leaching with hexane and storage studies under various conditions of immobilized lipase were investigated. The optimum esterification was found to be up to 90% yield. Only a slight of lipase leached out after being washed by 20 mL of hexane. This showed that lipases were strongly attached to the DEAE support via physical adsorption method, and it could be used as industrial biocatalyst.

 

Keywords:  immobilized enzyme, lipase, cellulose, esterification, biodiesel

 

Abstrak

Lipase dari Candida rugosa tersekatgerak pada dietilaminoetil-selulosa (DEAE) melalui kaedah penjerapan fizikal menunjukkan peratusan penyerapan protein tertinggi pada kadar 83.4%. Lipase-DEAE digunakan sebagai mangkin untuk sintesis berenzim butil oleat melalui tindak balas asid oleik dan butanol di dalam heksana. Butil oleat, satu ester alkilik dari asid lemak rantai panjang kini mempunyai permintaan tinggi untuk penghasilan biodiesel. Kesan suhu tindak balas, kestabilan terma lipase tersekatgerak, kestabilan pelarut organik, pelunturan dengan heksana dan kajian penyimpanan pada pelbagai kondisi lipase tersekatgerak telah diselidiki. Hasil tindak balas pada keadaan optima didapati menghampiri 90%. Hanya sedikit kuantiti lipase yang hilang selepas proses pelunturan setelah dicuci oleh pelarut heksana 20 mL. Ini menunjukkan bahawa lipase telah tersekatgerak dengan kuat pada bahan DEAE melalui kaedah penjerapan fizikal, dan ianya boleh digunakan sebagai biomangkin industri.

 

Kata kunci:  enzim tersekatgerak, lipase, selulosa, esterifikasi, biodiesel

 

References

1.          Abdul Rahman, M. B., Basri, M., Hussein, M. Z., Rahman, R. N. Z. A., Zainol, D. H. and Salleh, A. B. (2004). Immobilization of lipase from Candida Rugosa on layered double hydroxides for esterification reaction. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 118: 313-320.

2.          Zaidan, U. H., Rahman, M. B. A., Basri, M., Othman, S. S., Rahman, R. N. Z. R. A. and Salleh, A. B. (2010). Silylation of mica for lipase immobilization as biocatalysts in esterification. Applied Clay Science, 47: 276-282.

3.          Lian, X., Fang, Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., Lollar, C., Wang, X. and Zhou, H. C. (2017). Enzyme-MOF (Metal-Organic Framework) composites. Chemical Society Reviews, 46: 3386 – 3401.

4.          Liu, D., Chen, J. and Shi, Y. (2018). Advances on methods and easy separated support materials for enzymes immobilization. Trends in Analytical Chemistry, 102: 332-342.

5.          Sirisha, V. L., Ankita, J. and Amita, J., (2016). Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Advances in Food and Nutrition Research, 79: 179-211.

6.          O’Neill, S. P., Dunnill, P. and Lilly, M. D. (1971). A comparative study of immobilized amyglucosidase in a packed bed reactor and a continuous stirred tank reactor. Biotechnology and Bioengineering, 13: 337-352.

7.          Fradet, H., Arnaud, A., Rios, G. and Galzy, P. (1985). Hydration of nitriles using a bacterial nitrile-hydratase using DEAE-cellulose. Biotechnology and Bioengineering, 27: 1581-1585.

8.          Othman, S. S., Basri, M., Hussein, M. Z., Abdul Rahman, M. B., Rahman, R. N. Z. A., Salleh, A. B., and Jasmani, H. (2008). Production of highly enantioselective (-)-methyl butyrate using Candida Rugosa lipase immobilized on epoxy-activated supports. Food Chemistry, 106(2): 437-443.

9.          Stoytcheva, M. and Montero, G. (2011). Biodiesel: Feedstocks and processing technologies, In. Tech, Croatia: pp. 397-410.

10.        Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.

11.        Abdul Rahman, M. B., Md. Yunus, N. M., Othman, S. S., Basri, M., Salleh, A. B. and Rahman, R. N. Z. A. (2006). New lipases and proteases, Nova Science Publishers, Inc. New York: pp. 111-125.

12.        Paiva, A. L., Balcão, V. M. and Malcata, F. X. (2000). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology, 27(3–5): 187-204.

13.        Becktell, W. J. and Schellman, J. A. (1987). Protein stability curves. Biopolymers, 26: 1859-1877.

14.        Klibanov, A. M. (1986). Enzymes that work in organic solvents. Chemtech: 54-359.

15.        Gorman, L. A. and Dordick, J. S. (1992). Organic solvents strip water off enzymes. Biotechnology and Bioengineering, 39: 392-397.

16.        Abdul Rahman, M. B., Md Yunus, N. M., Hussein, M. Z., Rahman, R. N. Z. A., Salleh, A. B. and Basri, M. (2005). Application of advanced materials as support for immobilisation of lipase from Candida rugosa. Biocatalysis and Biotransformation, 23: 233-239.

17.        Zaidan, U. H., Abdul Rahman, M. B., Othman, S. S., Basri, M., Abdulmalek, E., Abdul Rahman, R. N. Z. R. and Salleh, A. B. (2012). Biocatalytic production of lactose ester catalysed by mica-based immobilised lipase. Food Chemistry, 131(1): 199-205.

18.        Bosley, J. (1997). Turning lipases into industrial biocatalysts. Biochemical Society Transactions, 25: 174-178.




Previous                    Content                    Next