Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 376 - 383
DOI:
10.17576/mjas-2019-2303-01
Candida rugosa LIPASE IMMOBILIZED ON
DIETHYLAMINOETHYL-CELLULOSE (DEAE) FOR ESTERIFICATION OF BUTYL OLEATE
(Lipase daripada Candida
rugosa Tersekatgerak pada Dietilaminoetil-Selulosa
(DEAE) untuk Penghasilan Ester Butil Oleat)
Mohd Basyaruddin Abdul Rahman1,2*, Ruhil Naznin Azaman2,
Emmy Maryati Omar1,2, Muhammad Alif Mohammad Latif1,2, Emilia Abdulmalek1,2
1Integrated Chemical BioPhysics Research, Faculty of
Science
2Department of Chemistry, Faculty of Science
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
*Corresponding author: basya@upm.edu.my
Received: 19
August 2018; Accepted: 14 May 2019
Abstract
Lipase from Candida rugosa was
immobilized onto diethylaminoethyl-cellulose (DEAE) through physical adsorption
method with high percentage of protein absorption obtained at 84%. The
lipase-DEAE was used to catalyze the enzymatic esterification of butyl oleate
by reacting oleic acid and butanol in hexane. Butyl oleate, an alkylic ester of
long-chain fatty acid is now in high demand to produce biodiesel. The effect of
reaction temperature, thermostability of the immobilization lipase, stability
in organic solvent, leaching with hexane and storage studies under various
conditions of immobilized lipase were investigated. The optimum esterification
was found to be up to 90% yield. Only a slight of lipase leached out after
being washed by 20 mL of hexane. This showed that lipases were strongly
attached to the DEAE support via
physical adsorption method, and it could be used as industrial biocatalyst.
Keywords: immobilized enzyme, lipase, cellulose,
esterification, biodiesel
Abstrak
Lipase dari Candida rugosa
tersekatgerak pada dietilaminoetil-selulosa (DEAE) melalui kaedah penjerapan
fizikal menunjukkan peratusan penyerapan protein tertinggi pada kadar 83.4%.
Lipase-DEAE digunakan sebagai mangkin untuk sintesis berenzim butil oleat
melalui tindak balas asid oleik dan butanol di dalam heksana. Butil oleat, satu
ester alkilik dari asid lemak rantai panjang kini mempunyai permintaan tinggi
untuk penghasilan biodiesel. Kesan suhu tindak balas, kestabilan terma lipase tersekatgerak, kestabilan pelarut organik, pelunturan
dengan heksana dan kajian penyimpanan pada pelbagai kondisi lipase
tersekatgerak telah diselidiki. Hasil tindak balas pada keadaan optima didapati
menghampiri 90%. Hanya sedikit kuantiti lipase yang hilang selepas proses
pelunturan setelah dicuci oleh pelarut heksana 20 mL. Ini menunjukkan bahawa
lipase telah tersekatgerak dengan kuat pada bahan DEAE melalui kaedah
penjerapan fizikal, dan ianya boleh digunakan sebagai biomangkin industri.
Kata kunci: enzim tersekatgerak, lipase,
selulosa, esterifikasi, biodiesel
References
1.
Abdul Rahman, M. B., Basri, M., Hussein, M. Z., Rahman, R. N. Z.
A., Zainol, D. H. and Salleh, A. B. (2004). Immobilization of lipase from Candida Rugosa on layered double
hydroxides for esterification reaction. Applied
Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology,
118: 313-320.
2.
Zaidan, U. H.,
Rahman, M. B. A., Basri, M., Othman, S. S., Rahman, R. N. Z. R. A. and Salleh,
A. B. (2010). Silylation of mica for lipase immobilization as biocatalysts in
esterification. Applied Clay Science,
47: 276-282.
3.
Lian, X., Fang,
Y., Joseph, E., Wang, Q., Li, J., Banerjee, S., Lollar, C., Wang, X. and Zhou,
H. C. (2017). Enzyme-MOF (Metal-Organic Framework) composites. Chemical Society Reviews, 46: 3386 –
3401.
4.
Liu, D., Chen,
J. and Shi, Y. (2018). Advances on methods and easy separated support materials
for enzymes immobilization. Trends in
Analytical Chemistry, 102: 332-342.
5.
Sirisha, V. L., Ankita,
J. and Amita, J., (2016). Enzyme immobilization: An overview on methods,
support material, and applications of immobilized enzymes. Advances in Food and Nutrition Research, 79: 179-211.
6.
O’Neill, S. P.,
Dunnill, P. and Lilly, M. D. (1971). A comparative study of immobilized
amyglucosidase in a packed bed reactor and a continuous stirred tank reactor. Biotechnology and Bioengineering, 13:
337-352.
7.
Fradet, H.,
Arnaud, A., Rios, G. and Galzy, P. (1985). Hydration of nitriles using a
bacterial nitrile-hydratase using DEAE-cellulose. Biotechnology and Bioengineering, 27: 1581-1585.
8.
Othman, S. S.,
Basri, M., Hussein, M. Z., Abdul Rahman, M. B., Rahman, R. N. Z. A., Salleh, A.
B., and Jasmani, H. (2008). Production of highly enantioselective (-)-methyl
butyrate using Candida Rugosa lipase
immobilized on epoxy-activated supports. Food
Chemistry, 106(2): 437-443.
9.
Stoytcheva, M.
and Montero, G. (2011). Biodiesel: Feedstocks and processing technologies, In.
Tech, Croatia: pp. 397-410.
10.
Bradford, M. M.
(1976). A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
11.
Abdul Rahman, M.
B., Md. Yunus, N. M., Othman, S. S., Basri, M., Salleh, A. B. and Rahman, R. N.
Z. A. (2006). New lipases and proteases, Nova Science Publishers, Inc. New
York: pp. 111-125.
12.
Paiva, A. L.,
Balcão, V. M. and Malcata, F. X. (2000). Kinetics and mechanisms of reactions
catalyzed by immobilized lipases. Enzyme
and Microbial Technology, 27(3–5): 187-204.
13.
Becktell, W. J.
and Schellman, J. A. (1987). Protein stability curves. Biopolymers, 26: 1859-1877.
14.
Klibanov, A. M.
(1986). Enzymes that work in organic solvents. Chemtech: 54-359.
15.
Gorman, L. A.
and Dordick, J. S. (1992). Organic solvents strip water off enzymes. Biotechnology and Bioengineering, 39:
392-397.
16.
Abdul Rahman, M.
B., Md Yunus, N. M., Hussein, M. Z., Rahman, R. N. Z. A., Salleh, A. B. and
Basri, M. (2005). Application of advanced materials as support for
immobilisation of lipase from Candida
rugosa. Biocatalysis and
Biotransformation, 23: 233-239.
17.
Zaidan, U. H.,
Abdul Rahman, M. B., Othman, S. S., Basri, M., Abdulmalek, E., Abdul Rahman, R.
N. Z. R. and Salleh, A. B. (2012). Biocatalytic production of lactose ester
catalysed by mica-based immobilised lipase. Food
Chemistry, 131(1): 199-205.
18.
Bosley, J.
(1997). Turning lipases into industrial biocatalysts. Biochemical Society Transactions, 25: 174-178.