Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 479 - 487
DOI:
10.17576/mjas-2019-2303-12
PREPARATION AND
CHARACTERIZATION OF IMPROVED HYDROPHILIC
POLYETHERSULFONE/REDUCED GRAPHENE OXIDE MEMBRANE
(Penyediaan dan Pencirian Penambahkaikan Hidrofilik
Membran Polietersulfon/Grafin Oksida Terturun)
Madzlan Aziz1*,
Nur Fatihah Tajul Arifin2, Woei-Jye Lau1
1Advanced
Membrane Technology Centre,
2Department of
Chemistry,
Faculty of
Science, Universiti Teknologi Malaysia,
81310 Johor
Bahru, Johor, Malaysia
*Corresponding
author: madzlan@utm.my
Received: 25 October 2017; Accepted: 22 January
2019
Abstract
Polyethersulfone
(PES)/reduced graphene oxide (rGO) membrane was prepared by phase inversion
method for water treatment. Graphene oxide (GO) was obtained via modified Hummer’s method and reduced
to rGO where NaBH4 was chosen as a reducing agent. FTIR was used to investigate
functional groups left on rGO after reduction process. The FTIR peak at 1718 cm-1,
attributed to the carbonyl (C=O) group, was absent after GO was reduced. Interlayer
spacing of GO and rGO were obtained using XRD. It was found that the interlayer
spacing of GO was reduced from 7.87 to 3.68 Å after reduction process due to
the removal of some of the functional groups from the material. The membrane
cross section showed that addition rGO increase the length of finger-like pores
as compared to neat PES when it is observed under SEM. It was observed that the
membrane hydrophilicity is enhanced as the contact angle of PES reduced from
69.70o to 32.99o when rGO 24 hours was introduced into
the polymer matrix. The highest pure water flux obtained was 174.29 L/m2h.
The membranes showed significant enhancement when rGO was used in the polymer
matrix.
Keyword: polyethersulfone,
phase inversion method, modified Hummer’s method, reduced graphene oxide
Abstrak
Membran polietersufon (PES)/grafin oksida terturun (rGO)
telah dihasilkan melalui kaedah fasa terbalik untuk rawatan air. Grafin oksida
(GO) dihasilkan menerusi kaedah Hummer terubahsuai dan diturunkan kepada rGO
menggunakan NaBH4 sebagai ejen penurunan. FTIR digunakan untuk menyiasat
kumpulan berfungsi yang hadir pada rGO selepas proses penurunan. Puncak FTIR
pada 1718 cm-1 yang menunjukkan kumpulan karbonil (C=O) tidak hadir
selepas GO terturun. Jarak antara lapisan GO dan rGO telah dikaji menggunakan
XRD. Didapati jarak antara lapisan GO berkurang daripada 7.87 Å ke 3.68 Å
selepas proses penurunan kerana sebilangan kumpulan berfungsi telah terkeluar
dari bahan. Keratan rentas membran menunjukkan bahawa penambahan rGO meningkatkan
panjang liang seperti jejari berbanding PES asli apabila dilihat menggunakan
SEM. Didapati bahawa sifat hidrofilik membran telah dipertingkatkan kerana sudut
sentuh air PES telah berkurang dari 69.70o kepada 32.99o apabila
rGO 24 jam ditambah ke dalam matriks polimer. Bacaan fluks air tulen tertinggi
ialah 174.29 L/m2h. Membran menunjukkan perubahan ketara apabila rGO
digunakan di dalam matriks polimer.
Kata kunci: polietersulfon, kaedah fasa terbalik, kaedah Hummer
terubahsuai, grafin oksida terturun
References
1. Forati, T., Atai, M., Rashidi, A. M.,
Imani, M. and Behnamghader, A. (2014). Physical and mechanical properties of
graphene oxide/polyethersulfone nanocomposites. Polymer Advance Technology, 25:322–328.
2. Razmjou, A., Resosudarmo, A., Holmes, R. L.
and Li, H. (2012). The effect of modified TiO2 nanoparticles on the
polyethersulfone ultrafiltration hollow fiber membranes. Desalination, 287: 271–280.
3. Mehrparvar, A. and Rahimpour, A. (2015) Surface
modification of novel polyether sulfone amide (PESA) ultrafiltration membranes
by grafting hydrophilic monomers. Journal Industry and Engineering Chemistry, 28: 359–368.
4. Zinadini, S., Zinatizadeh, A. A., Rahimi,
M., Vatanpour, V., and Zangeneh, H. (2014) Preparation of a novel antifouling
mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal
Membrane Science, 453: 292–301.
5. Peyravi, M., Rahimpour, A., Jahanshahi, M.,
Javadi, A. and Shockravi, A. (2012). Tailoring the surface properties of PES
ultrafiltration membranes to reduce the fouling resistance using synthesized
hydrophilic copolymer. Microporous Mesoporous Materials, 160:114–125.
6. Qu, P., Tang, H., Gao, Y., Zhang, L. P. and
Wang, S. (2010) Polyethersulfone composite membrane blended With cellulose
fibrils. BioResources, 5: 2323–2336.
7. Xiang, Q., Yu, J. and Jaroniec, M. (2012). Graphene-based
semiconductor photocatalysts. Chemistry Society Reviews, 41: 782.
8. Compton, O. C. and Nguyen, S. T. (2010). Graphene
oxide, highly reduced graphene oxide, and graphene : Versatile building blocks
for carbon-based materials. Small, 6:711–723.
9. Kuilla, T., Bhadra, S., Yao, D. and Kim, N.
H. (2010). Recent advances in graphene based polymer composites. Progress
Polymer Science, 35: 1350–1375.
10. Shah, R., Kausar, A., Muhammad, B. and Shah,
S. (2015). Progression from graphene and graphene oxide to high performance
polymer-based nanocomposite: A review. Polymer Plastic Technology Engineering, 54:173–183.
11. Ganesh, B. M., Isloor, A. M. and Ismail, A. F.
(2013). Enhanced hydrophilicity and salt rejection study of graphene
oxide-polysulfone mixed matrix membrane. Desalination, 313: 199–207.
12. Lee, J., Chae, H. R., Won, Y. J. and Lee, K.
(2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and
antifouling properties for wastewater treatment. Journal Membrance Science, 448: 223–230.
13. Jin, F., Lv, W., Zhang, C. and Li, Z. (2013). High-performance
ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC
Advances, 3: 21394.
14. Johnson, D.W., Dobson, B. P. and Coleman, K. S.
(2015). A manufacturing perspective on graphene dispersions. Current Opinion
Colloid Interface Science, 20: 367–382.
15. Mishra, S. K., Tripathi, S. N., Choudhary, V.
and Gupta, B. D. (2014) SPR based fibre optic ammonia gas sensor utilizing
nanocomposite film of PMMA/reduced graphene oxide prepared by in situ
polymerization. Sensors Actuators, B Chemical, 199: 190–200.
16. Dahlberg, T. (2016). The first order Raman
spectrum of isotope labelled nitrogen-doped reduced graphene oxide. Retrieved
from http://www.diva-portal.org/smash/get/diva2:905266/FULLTEXT01 .pdf.
17. Ahmad, A. L., Abdulkarim, A. A., Ooi, B. S.
and Ismail, S. (2013). Recent development in additives modifications of
polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 223: 246–267.
18. Pei, S. and Cheng, H. M. (2012). The reduction
of graphene oxide. Carbon, 50: 3210–3228.
19. Yang, Z., Zheng, Q., Qiu, H., Li, J. and Yang,
J. (2015). A simple method for the reduction of graphene oxide by sodium
borohydride with CaCl2 as a catalyst. New Carbon Materials, 30: 41–47.
20. Lee, D. C., Yang, H. N., Park, S. H. and Kim,
W. J. (2014). Nafion/graphene oxide composite membranes for low humidifying
polymer electrolyte membrane fuel cell. Journa Membrance Science, 452: 20–28.
21. Liang, Y., Wu, D., Feng, X. and Müllen, K. (2009).
Dispersion of graphene sheets in organic solvent supported by ionic
interactions. Advance Materials,
21: 1679–1683.
22. Mathkar, A., Tozier, D., Cox, P. and Ong, P. (2012).
Controlled, stepwise reduction and band gap manipulation of graphene oxide. Journal of Physical Chemistry Letters,
3: 986-991.
23. Deka, M. J., Baruah, U. and Chowdhury, D.
(2015). Insight into electrical conductivity of graphene and functionalized
graphene: Role of lateral dimension of graphene sheet. Materials Chemistry
Physics, 163: 236–244.
24. Silwana, B., Van der Horst, C., Iwuoha, E. and
Somerset, V. (2015). Synthesis, characterisation and electrochemical evaluation
of reduced graphene oxide modified antimony nanoparticles. Thin Solid Films, 592:124–134.
25. Shin, H. J., Kim, K. K., Benayad, A. and Yoon,
S. M. (2009). Efficient reduction of graphite oxide by sodium borohydride and
its effect on electrical conductance. Advances Functional Materials, 19: 1987–1992.
26. Naebe, M., Wang, J., Amini, A. and Khayyam, H.
(2014). Mechanical property and structure of covalent functionalised
graphene/epoxy nanocomposites. Scientific Reports, 4: 1–7.
27. Hu, Y., Song, S. and Lopez-Valdivieso, A.
(2015). Effects of oxidation on the defect of reduced graphene oxides in
graphene preparation. Journal of Colloid Interface Sciences, 450: 68–73.
28. Kellici, S., Acord, J., Ball, J. and Reehal,
H. S. (2014). A single rapid route for the synthesis of reduced graphene oxide
with antibacterial activities. RSC Advances, 4: 14858.
29. Liu, S., Zeng, T. H., Hofmann, M. and Burcombe,
E. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide,
and reduced graphene oxide : Membrane and oxidative stress. ACS Nano, 9: 6971–6980.
30. Han, J. W. and Kim, J. (2015). Reduction of
graphene oxide by resveratrol : a novel and simple biological method for the
synthesis of an effective anticancer nanotherapeutic molecule. International Journal of Nanomedicine, 10:
2951–2969.
31. Chai, P. V., Mahmoudi, E., Teow, Y. H. and
Mohammad, A.W. (2017). Preparation of novel polysulfone-Fe3O4/GO
mixed-matrix membrane for humic acid rejection. Journal of Water Process Engineering, 15: 83–88.
32. Ganesh, B. M., Isloor, A. M. and Ismail, A. F.
(2013). Enhanced hydrophilicity and salt rejection study of graphene
oxide-polysulfone mixed matrix membrane. Desalination, 313: 199–207.
33. Celik, E., Park, H., Choi, H. and Choi, H.
(2011). Carbon nanotube blended polyethersulfone membranes for fouling control in
water treatment. Water Research,
45: 274–282.
34. Cote, L. J., Cruz-silva, R. and Huang, J.
(2009). Flash reduction and patterning of graphite oxide and its polymer
composite. Journal of American Chemical
Society, 131(17): 11027–11032.