Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 479 - 487

DOI: 10.17576/mjas-2019-2303-12

 

 

 

PREPARATION AND CHARACTERIZATION OF IMPROVED HYDROPHILIC POLYETHERSULFONE/REDUCED GRAPHENE OXIDE MEMBRANE

 

(Penyediaan dan Pencirian Penambahkaikan Hidrofilik Membran Polietersulfon/Grafin Oksida Terturun)

 

Madzlan Aziz1*, Nur Fatihah Tajul Arifin2, Woei-Jye Lau1

 

1Advanced Membrane Technology Centre,

2Department of Chemistry,

Faculty of Science, Universiti Teknologi Malaysia,

81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author:  madzlan@utm.my  

 

 

Received: 25 October 2017; Accepted: 22 January 2019

 

 

Abstract

Polyethersulfone (PES)/reduced graphene oxide (rGO) membrane was prepared by phase inversion method for water treatment. Graphene oxide (GO) was obtained via modified Hummer’s method and reduced to rGO where NaBH4 was chosen as a reducing agent. FTIR was used to investigate functional groups left on rGO after reduction process. The FTIR peak at 1718 cm-1, attributed to the carbonyl (C=O) group, was absent after GO was reduced. Interlayer spacing of GO and rGO were obtained using XRD. It was found that the interlayer spacing of GO was reduced from 7.87 to 3.68 Å after reduction process due to the removal of some of the functional groups from the material. The membrane cross section showed that addition rGO increase the length of finger-like pores as compared to neat PES when it is observed under SEM. It was observed that the membrane hydrophilicity is enhanced as the contact angle of PES reduced from 69.70o to 32.99o when rGO 24 hours was introduced into the polymer matrix. The highest pure water flux obtained was 174.29 L/m2h. The membranes showed significant enhancement when rGO was used in the polymer matrix.

 

Keyword:  polyethersulfone, phase inversion method, modified Hummer’s method, reduced graphene oxide

 

Abstrak

Membran polietersufon (PES)/grafin oksida terturun (rGO) telah dihasilkan melalui kaedah fasa terbalik untuk rawatan air. Grafin oksida (GO) dihasilkan menerusi kaedah Hummer terubahsuai dan diturunkan kepada rGO menggunakan NaBH4 sebagai ejen penurunan. FTIR digunakan untuk menyiasat kumpulan berfungsi yang hadir pada rGO selepas proses penurunan. Puncak FTIR pada 1718 cm-1 yang menunjukkan kumpulan karbonil (C=O) tidak hadir selepas GO terturun. Jarak antara lapisan GO dan rGO telah dikaji menggunakan XRD. Didapati jarak antara lapisan GO berkurang daripada 7.87 Å ke 3.68 Å selepas proses penurunan kerana sebilangan kumpulan berfungsi telah terkeluar dari bahan. Keratan rentas membran menunjukkan bahawa penambahan rGO meningkatkan panjang liang seperti jejari berbanding PES asli apabila dilihat menggunakan SEM. Didapati bahawa sifat hidrofilik membran telah dipertingkatkan kerana sudut sentuh air PES telah berkurang dari 69.70o kepada 32.99o apabila rGO 24 jam ditambah ke dalam matriks polimer. Bacaan fluks air tulen tertinggi ialah 174.29 L/m2h. Membran menunjukkan perubahan ketara apabila rGO digunakan di dalam matriks polimer.

 

Kata kunci:  polietersulfon, kaedah fasa terbalik, kaedah Hummer terubahsuai, grafin oksida terturun

 

References

1.     Forati, T., Atai, M., Rashidi, A. M., Imani, M. and Behnamghader, A. (2014). Physical and mechanical properties of graphene oxide/polyethersulfone nanocomposites. Polymer Advance Technology, 25:322–328.

2.     Razmjou, A., Resosudarmo, A., Holmes, R. L. and Li, H. (2012). The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination, 287: 271–280.

3.     Mehrparvar, A. and Rahimpour, A. (2015) Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. Journal Industry and Engineering Chemistry, 28: 359–368.

4.     Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., and Zangeneh, H. (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal Membrane Science, 453: 292–301.

5.     Peyravi, M., Rahimpour, A., Jahanshahi, M., Javadi, A. and Shockravi, A. (2012). Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer. Microporous Mesoporous Materials, 160:114–125.

6.     Qu, P., Tang, H., Gao, Y., Zhang, L. P. and Wang, S. (2010) Polyethersulfone composite membrane blended With cellulose fibrils. BioResources, 5: 2323–2336.

7.     Xiang, Q., Yu, J. and Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chemistry Society Reviews, 41: 782.

8.     Compton, O. C. and Nguyen, S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene : Versatile building blocks for carbon-based materials. Small, 6:711–723.

9.     Kuilla, T., Bhadra, S., Yao, D. and Kim, N. H. (2010). Recent advances in graphene based polymer composites. Progress Polymer Science, 35: 1350–1375.

10.  Shah, R., Kausar, A., Muhammad, B. and Shah, S. (2015). Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: A review. Polymer Plastic Technology Engineering, 54:173–183.

11.  Ganesh, B. M., Isloor, A. M. and Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313: 199–207.

12.  Lee, J., Chae, H. R., Won, Y. J. and Lee, K. (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal Membrance Science, 448: 223–230.

13.  Jin, F., Lv, W., Zhang, C. and Li, Z. (2013). High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Advances, 3: 21394.

14.  Johnson, D.W., Dobson, B. P. and Coleman, K. S. (2015). A manufacturing perspective on graphene dispersions. Current Opinion Colloid Interface Science, 20: 367–382.

15.  Mishra, S. K., Tripathi, S. N., Choudhary, V. and Gupta, B. D. (2014) SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors Actuators, B Chemical, 199: 190–200.

16.  Dahlberg, T. (2016). The first order Raman spectrum of isotope labelled nitrogen-doped reduced graphene oxide. Retrieved from http://www.diva-portal.org/smash/get/diva2:905266/FULLTEXT01 .pdf.

17.  Ahmad, A. L., Abdulkarim, A. A., Ooi, B. S. and Ismail, S. (2013). Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 223: 246–267.

18.  Pei, S. and Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50: 3210–3228.

19.  Yang, Z., Zheng, Q., Qiu, H., Li, J. and Yang, J. (2015). A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Materials, 30: 41–47.

20.  Lee, D. C., Yang, H. N., Park, S. H. and Kim, W. J. (2014). Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. Journa Membrance Science, 452: 20–28.

21.  Liang, Y., Wu, D., Feng, X. and Müllen, K. (2009). Dispersion of graphene sheets in organic solvent supported by ionic interactions. Advance Materials, 21: 1679–1683.

22.  Mathkar, A., Tozier, D., Cox, P. and Ong, P. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. Journal of Physical Chemistry Letters, 3: 986-991.

23.  Deka, M. J., Baruah, U. and Chowdhury, D. (2015). Insight into electrical conductivity of graphene and functionalized graphene: Role of lateral dimension of graphene sheet. Materials Chemistry Physics, 163: 236–244.

24.  Silwana, B., Van der Horst, C., Iwuoha, E. and Somerset, V. (2015). Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles. Thin Solid Films, 592:124–134.

25.  Shin, H. J., Kim, K. K., Benayad, A. and Yoon, S. M. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advances Functional Materials, 19: 1987–1992.

26.  Naebe, M., Wang, J., Amini, A. and Khayyam, H. (2014). Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Scientific Reports, 4: 1–7.

27.  Hu, Y., Song, S. and Lopez-Valdivieso, A. (2015). Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. Journal of Colloid Interface Sciences, 450: 68–73.

28.  Kellici, S., Acord, J., Ball, J. and Reehal, H. S. (2014). A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Advances, 4: 14858.

29.  Liu, S., Zeng, T. H., Hofmann, M. and Burcombe, E. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide : Membrane and oxidative stress. ACS Nano, 9: 6971–6980.

30.  Han, J. W. and Kim, J. (2015). Reduction of graphene oxide by resveratrol : a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. International Journal of Nanomedicine, 10: 2951–2969.

31.  Chai, P. V., Mahmoudi, E., Teow, Y. H. and Mohammad, A.W. (2017). Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. Journal of Water Process Engineering, 15: 83–88.

32.  Ganesh, B. M., Isloor, A. M. and Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313: 199–207.

33.  Celik, E., Park, H., Choi, H. and Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Research, 45: 274–282.

34.  Cote, L. J., Cruz-silva, R. and Huang, J. (2009). Flash reduction and patterning of graphite oxide and its polymer composite. Journal of American Chemical Society, 131(17): 11027–11032.

 

 




Previous                    Content                    Next