Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 472 - 478
DOI:
10.17576/mjas-2019-2303-11
THE USE
OF LOW GRADE LIMESTONE IN ACID MINE DRAINAGE TREATMENT
(Penggunaan Batu Kapur Bergred Rendah dalam Rawatan Saliran
Lombong Berasid)
Anuar Othman1,2,
Azli Sulaiman1*, Ismail Ibrahim2
1Department of Chemistry, Faculty of Science
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
2Mineral Research Centre,
Department
of Mineral and Geoscience Malaysia, 31400 Ipoh, Perak, Malaysia
*Corresponding
author: azli@kimia.fs.utm.my
Received: 25 October 2017; Accepted: 22 January
2019
Abstract
In this study, low grade limestone
(LGL) was used in treating acid mine drainage (AMD). Based on X-ray
fluorescence (XRF) result, the content of calcium carbonate mineral in
limestone used was around 80% that can be considered as LGL. The pH of AMD
samples increased after treated with all parameter weights of LGL at every five
minutes of interval times. The parameters weights of LGL used in the experiments
were 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g.
For every parameter weight of LGL, the interval times used were 0, 5,
15, 20, 25 and 30 minutes. The highest of pH value obtained was 6.44 ± 0.00 by
using 6.0 g of LGL at interval time 30 minutes. The suitable pH value chosen
was 6.11 ± 0.00 by using 5.0 g of LGL at interval time 20 minutes because the
parameter had complied with Standards A and B of Environmental Quality Act 1974
with less cost compared to other parameters. Heavy metals content such as
arsenic, cadmium, chromium, iron, manganese and zinc had decreased after
reaction with all LGL weights. The content of arsenic in AMD samples after
reaction with all LGL weights had complied with both standards’ requirement
except with 1.0 g of LGL. The percentage of removal heavy metals by using all
parameter weights of LGL such as arsenic, cadmium, chromium, iron, manganese
and zinc were around 98.8 to 99.8%, 53.8 to 88.5%, 94.7 to 96.5%, 99.6 to 100%,
34.6 to 38.9% and 27.0 to 90.1%, respectively.
Keywords:
limestone, acid mine drainage, heavy metal
Abstrak
Dalam
kajian ini, batu kapur bergred rendah (LGL) telah digunakan dalam rawatan
saliran lombong berasid (AMD). Berdasarkan keputusan pendaflour sinar-X (XRF),
kandungan mineral kalsium karbonat di dalam batu kapur yang digunakan adalah
sekitar 80% yang boleh dianggap sebagai LGL. pH sampel AMD telah bertambah
selepas bertindakbalas dengan semua parameter berat LGL pada setiap lima minit
selang masa. Parameter berat LGL yang digunakan dalam eksperimen adalah 1.0,
2.0, 3.0, 4.0, 5.0 dan 6.0 g. Untuk setiap parameter berat LGL, selang masa
yang digunakan adalah 0, 5, 10, 15, 20, 25 dan 30 minit. Nilai pH yang paling
tinggi diperolehi adalah 6.44 ± 0.00 dengan menggunakan 6.0 g LGL pada selang
masa 30 minit. Nilai pH yang paling sesuai telah dipilih adalah 6.11 ± 0.00 dengan menggunakan 5.0 g
LGL pada selang masa 20 minit kerana parameter ini adalah kurang kos untuk
mematuhi Piawai A dan B berbanding parameter yang lain. Kandungan logam berat
seperti arsenik, kadmium, kromium, besi, mangan dan zink telah berkurangan
selepas bertindakbalas dengan semua berat LGL. Kandungan arsenik dalam
sampel-sampel AMD selepas bertindakbalas dengan semua berat LGL telah dipatuhi
dengan kehendak kedua-dua standard kecuali dengan menggunakan 1.0 g LGL.
Peratusan penyingkiran logam berat dengan menggunakan semua parameter berat LGL
seperti arsenik, kadmium, besi, mangan dan zink masing-masing adalah sekitar
98.8 hingga 99.8%, 53.8 hingga 88.5%, 94.7 hingga 96.5%, 99.6 hingga 100%, 34.6
hingga 38.9% and 27.0 hingga 90.1%.
Kata kunci: batu kapur, saliran lombong berasid, logam berat
References
1.
Kirboga,
S. and Oner, M. (2013). Application of experimental design for the
precipitation of calcium carbonate in the presence of biopolymer. Powder Technology, 249: 95-104.
2.
Othman,
A., Isa, N. and Othman, R. (2015). Preparation of precipitated calcium
carbonate using additive and without additive. Jurnal Teknologi, 77(3): 49-53.
3.
Erdogan,
N. and Eken, H.A. (2015). Precipitated calcium carbonate production, synthesis
and properties. Physicochemical Problems
of Mineral Processing, 2: 79-84.
4.
Shirsath,
S. R., Sonawane, S. H., Saini, D. R. and Pandit, A. B. (2015). Continuous
precipitation of calcium carbonate using sonochemical reactor. Ultrasonics
Sonochemistry, 24:
132-139.
5.
Muhammad,
S. N., Mohd Kusin, F., Md Zahar, M. S., Halimoon, N. and Mohamat Yusuf, F.
(2015). Passive treatment of acid mine drainage using mixed substrates: Batch
experiments. Procedia Environmental
Sciences, 30: 157-161.
6.
Othman,
A., Sulaiman, A. and Sulaiman, S. K. (2015). The study on the effectiveness of
organic material in acid mine drainage treatment. Jurnal Teknologi, 77(2): 79-84.
7.
Othman,
A., Sulaiman, A. and Sulaiman, S.K. (2017). Carbide lime in acid mine drainage
treatment. Journal of Water Process
Engineering, 15: 31-36.
8.
Othman,
A., Sulaiman, A. and Sulaiman, S. K. (2017). The use of hydrated lime in acid
mine drainage treatment. AIP Proceeding,
1847: 1-6.
9.
Othman,
A., Sulaiman, A. and Sulaiman, S. K. (2017). The use of quicklime in acid mine
drainage treatment. Chemical Engineering
Transaction, 56: 1585-1590.
10.
Harrison,
D. J. (1993). Industrial minerals laboratory manual; Limestone. Minerology and Petrology Group, British Geological Survey. Technical
Report, WG/92/29: pp. 1-45.
11.
Teng,
W., Kuang, J., Luo, Z. and Shu, W. (2017). Microbial diversity and community
assembly across environmental gradients in acid mine drainage. Minerals, 7(106): 1-10.
12.
Ekolu,
S. O., Diop, S., Azene, F. and Mkhize, N. (2016). Disintegration of concrete
construction induced by acid mine drainage attack. Journal of the South African Institution of a Civil Engineering,
58(1): 34-42.
13.
Environmental
Quality Act 1974 (Act 127), Regulations,
Rules & Orders. (2015). International Law Book Services, Selangor.
14.
Chowdhury,
A. R., Sarkar, D. and Datta, R. (2015). Remediation of acid mine
drainage-impacted water. Current
Pollution Reports, 1: 131-141.
15.
Nenov,
V., Dimitrova, N., Dobrevsky, I. and Rands, D. G. (1992). Effective
precipitation of arsenic from aqueous solution by iron(iii) sulfate. Clean – Soil Air Water, 20(1): 14-17.
16.
Kursunoglu,
S. and Kaya, M. (2014). Dissolution and precipitation of zinc and manganese
obtained from spent zinc-carbon and alkaline battery powder. Physicochemical Problems of Mineral
Processing, 50(1): 41-45.
17.
Aube,
B. and Zinck, J. (2003). Lime treatment of acid mine drainage in Canada. Brazil-Canada Seminar on Mine
Rehabilitation, 1 – 3 December, Florianopolis, Brazil.