Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 472 - 478

DOI: 10.17576/mjas-2019-2303-11

 

 

 

THE USE OF LOW GRADE LIMESTONE IN ACID MINE DRAINAGE TREATMENT

 

(Penggunaan Batu Kapur Bergred Rendah dalam Rawatan Saliran Lombong Berasid)

 

Anuar Othman1,2, Azli Sulaiman1*, Ismail Ibrahim2

 

1Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

2Mineral Research Centre,

Department of Mineral and Geoscience Malaysia, 31400 Ipoh, Perak, Malaysia

 

*Corresponding author:  azli@kimia.fs.utm.my

 

 

Received: 25 October 2017; Accepted: 22 January 2019

 

 

Abstract

In this study, low grade limestone (LGL) was used in treating acid mine drainage (AMD). Based on X-ray fluorescence (XRF) result, the content of calcium carbonate mineral in limestone used was around 80% that can be considered as LGL. The pH of AMD samples increased after treated with all parameter weights of LGL at every five minutes of interval times. The parameters weights of LGL used in the experiments were 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g.  For every parameter weight of LGL, the interval times used were 0, 5, 15, 20, 25 and 30 minutes. The highest of pH value obtained was 6.44 ± 0.00 by using 6.0 g of LGL at interval time 30 minutes. The suitable pH value chosen was 6.11 ± 0.00 by using 5.0 g of LGL at interval time 20 minutes because the parameter had complied with Standards A and B of Environmental Quality Act 1974 with less cost compared to other parameters. Heavy metals content such as arsenic, cadmium, chromium, iron, manganese and zinc had decreased after reaction with all LGL weights. The content of arsenic in AMD samples after reaction with all LGL weights had complied with both standards’ requirement except with 1.0 g of LGL. The percentage of removal heavy metals by using all parameter weights of LGL such as arsenic, cadmium, chromium, iron, manganese and zinc were around 98.8 to 99.8%, 53.8 to 88.5%, 94.7 to 96.5%, 99.6 to 100%, 34.6 to 38.9% and 27.0 to 90.1%, respectively.

 

Keywords:  limestone, acid mine drainage, heavy metal

 

Abstrak

Dalam kajian ini, batu kapur bergred rendah (LGL) telah digunakan dalam rawatan saliran lombong berasid (AMD). Berdasarkan keputusan pendaflour sinar-X (XRF), kandungan mineral kalsium karbonat di dalam batu kapur yang digunakan adalah sekitar 80% yang boleh dianggap sebagai LGL. pH sampel AMD telah bertambah selepas bertindakbalas dengan semua parameter berat LGL pada setiap lima minit selang masa. Parameter berat LGL yang digunakan dalam eksperimen adalah 1.0, 2.0, 3.0, 4.0, 5.0 dan 6.0 g. Untuk setiap parameter berat LGL, selang masa yang digunakan adalah 0, 5, 10, 15, 20, 25 dan 30 minit. Nilai pH yang paling tinggi diperolehi adalah 6.44 ± 0.00 dengan menggunakan 6.0 g LGL pada selang masa 30 minit. Nilai pH yang paling sesuai telah dipilih  adalah 6.11 ± 0.00 dengan menggunakan 5.0 g LGL pada selang masa 20 minit kerana parameter ini adalah kurang kos untuk mematuhi Piawai A dan B berbanding parameter yang lain. Kandungan logam berat seperti arsenik, kadmium, kromium, besi, mangan dan zink telah berkurangan selepas bertindakbalas dengan semua berat LGL. Kandungan arsenik dalam sampel-sampel AMD selepas bertindakbalas dengan semua berat LGL telah dipatuhi dengan kehendak kedua-dua standard kecuali dengan menggunakan 1.0 g LGL. Peratusan penyingkiran logam berat dengan menggunakan semua parameter berat LGL seperti arsenik, kadmium, besi, mangan dan zink masing-masing adalah sekitar 98.8 hingga 99.8%, 53.8 hingga 88.5%, 94.7 hingga 96.5%, 99.6 hingga 100%, 34.6 hingga 38.9% and 27.0 hingga 90.1%.

 

Kata kunci:  batu kapur, saliran lombong berasid, logam berat

 

References

1.       Kirboga, S. and Oner, M. (2013). Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer. Powder Technology, 249: 95-104.

2.       Othman, A., Isa, N. and Othman, R. (2015). Preparation of precipitated calcium carbonate using additive and without additive. Jurnal Teknologi, 77(3): 49-53.

3.       Erdogan, N. and Eken, H.A. (2015). Precipitated calcium carbonate production, synthesis and properties. Physicochemical Problems of Mineral Processing, 2: 79-84.

4.       Shirsath, S. R., Sonawane, S. H., Saini, D. R. and Pandit, A. B. (2015). Continuous precipitation of calcium carbonate using sonochemical reactor. Ultrasonics Sonochemistry, 24: 132-139.

5.       Muhammad, S. N., Mohd Kusin, F., Md Zahar, M. S., Halimoon, N. and Mohamat Yusuf, F. (2015). Passive treatment of acid mine drainage using mixed substrates: Batch experiments. Procedia Environmental Sciences, 30: 157-161.

6.       Othman, A., Sulaiman, A. and Sulaiman, S. K. (2015). The study on the effectiveness of organic material in acid mine drainage treatment. Jurnal Teknologi, 77(2): 79-84.

7.       Othman, A., Sulaiman, A. and Sulaiman, S.K. (2017). Carbide lime in acid mine drainage treatment. Journal of Water Process Engineering, 15: 31-36.

8.       Othman, A., Sulaiman, A. and Sulaiman, S. K. (2017). The use of hydrated lime in acid mine drainage treatment. AIP Proceeding, 1847: 1-6.

9.       Othman, A., Sulaiman, A. and Sulaiman, S. K. (2017). The use of quicklime in acid mine drainage treatment. Chemical Engineering Transaction, 56: 1585-1590.

10.    Harrison, D. J. (1993). Industrial minerals laboratory manual; Limestone. Minerology and Petrology Group, British Geological Survey. Technical Report, WG/92/29: pp. 1-45.

11.    Teng, W., Kuang, J., Luo, Z. and Shu, W. (2017). Microbial diversity and community assembly across environmental gradients in acid mine drainage. Minerals, 7(106): 1-10.

12.    Ekolu, S. O., Diop, S., Azene, F. and Mkhize, N. (2016). Disintegration of concrete construction induced by acid mine drainage attack. Journal of the South African Institution of a Civil Engineering, 58(1): 34-42.

13.    Environmental Quality Act 1974 (Act 127), Regulations, Rules & Orders. (2015). International Law Book Services, Selangor.

14.    Chowdhury, A. R., Sarkar, D. and Datta, R. (2015). Remediation of acid mine drainage-impacted water. Current Pollution Reports, 1: 131-141.

15.    Nenov, V., Dimitrova, N., Dobrevsky, I. and Rands, D. G. (1992). Effective precipitation of arsenic from aqueous solution by iron(iii) sulfate. Clean – Soil Air Water, 20(1): 14-17.

16.    Kursunoglu, S. and Kaya, M. (2014). Dissolution and precipitation of zinc and manganese obtained from spent zinc-carbon and alkaline battery powder. Physicochemical Problems of Mineral Processing, 50(1): 41-45.

17.    Aube, B. and Zinck, J. (2003). Lime treatment of acid mine drainage in Canada. Brazil-Canada Seminar on Mine Rehabilitation, 1 – 3 December, Florianopolis, Brazil.

 




Previous                    Content                    Next