Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 462 - 471

DOI: 10.17576/mjas-2019-2303-10

 

 

 

SYNTHESIS OF MESOPOROUS NANOPARTICLES VIA MICROWAVE-ASSISTED METHOD FOR PHOTOCATALYTIC DEGRADATION OF PHENOL DERIVATIVES

 

(Sintesis Nanopartikel Bermesoliang Melalui Kaedah Bantuan-Gelombang Mikro untuk Degradasi Fotomangkin daripada Terbitan Fenol)

 

Nur Farhana Jaafar1*, Nor Amira Marfur1, Nurfatehah Wahyuny Che Jusoh2, Yuki Nagao3, Nur Hidayahtul Nazirah Kamarudin4,5, Rohayu Jusoh6, Mohammad Anwar Mohamed Iqbal1

 

1School of Chemical Sciences,

 Universiti Sains Malaysia, 11800 USM Penang, Malaysia

2Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT),

Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

3School of Materials Science,

Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

4Research Center for Sustainable Process Technology (CESPRO),

5Chemical Engineering Programme, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

6Faculty of Chemical and Natural Resources Engineering,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

 

*Corresponding author:  nurfarhana@usm.my

 

 

Received: 14 January 2019; Accepted: 26 April 2019

 

 

Abstract

Mesoporous transition metal oxides have gained attention widely since they possess both optical and electronic properties of transition metal oxides especially for photocatalytic degradation application. In this research work, mesoporous titania nanoparticles (MTN) and mesoporous zinc oxide nanoparticles (MZN) were successfully synthesized using microwave (MW)-assisted method to degrade phenol derivatives under visible light irradiation. The microwave sintering effect on the surface of these modified structures was studied to relate with their photocatalytic performance. The characterization results indicated that MW-assisted method was mainly contributed in generating Ti3+ site defects (TSD) and oxygen vacancies (OV) in MTN while for MZN contained only OV as one of the strategies in light-absorption modification for TiO2 and ZnO to enhance their photoactivity. MTN also showed the degradation of 2-chlorophenol was up to 97% while degradation of phenol by MZN was up to 87%.

 

Keywords:  mesoporous nanoparticles, titanium dioxide, zinc oxide, microwave-assisted, photocatalytic

 

Abstrak

Logam oksida peralihan bermesoliang telah mendapat perhatian secara meluas kerana mereka mempunyai kedua-dua sifat optik dan elektronik bagi oksida logam peralihan terutamanya untuk aplikasi degradasi fotomangkin. Dalam kajian ini, nanopartikel titania bermesoliang (MTN) dan nanopartikel zink oksida bermesoliang (MZN) telah berjaya disintesis menggunakan kaedah bantuan-gelombang mikro (MW) untuk mendegradasi terbitan fenol di bawah sinaran cahaya nampak. Kesan pensinteran gelombang mikro pada permukaan struktur yang diubahsuai telah dikaji untuk dikaitkan dengan prestasi fotomangkin mereka. Keputusan pencirian menunjukkan bahawa kaedah bantuan-MW merupakan penyumbang utama dalam pembentukan tapak Ti3+ cacat (TSD) dan kekosongan oksigen permukaan (OV) dalam MTN manakala bagi MZN hanya mengandungi OV sebagai salah satu strategi untuk pengubahsuaian penyerapan-cahaya bagi TiO2 and ZnO untuk meningkatkan fotoaktiviti mereka. MTN juga menunjukkan degradasi 2-klorofenol sehingga 97% manakala degradasi fenol oleh MZN sehingga 87%.

 

Kata kunci:  nanopartikel bermesoliang, titanium dioksida, zink oksida, bantuan-gelombang mikro, fotomangkin

 

References

1.       Aba-Guevara, C. G., Medina-Ramírez, I. E., Hernández-Ramírez, A., Jáuregui-Rincón, J., Lozano-Álvarez, J. A. and Rodríguez-López, J. L. (2017). Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceramics International43(6): 5068-5079.

2.       Reinosa, J. J., Docio, C. M. Á., Ramírez, V. Z. and Lozano, J. F. F. (2018). Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens. Ceramics International44(3): 2827-2834.

3.       Zhu, M., Chen, L., Gong, H., Zi, M. and Cao, B. (2014). A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceramics International40(1): 2337-2342.

4.       Baskar, G. and Soumiya, S. (2016). Production of biodiesel from castor oil using iron(II) doped zinc oxide nanocatalyst. Renewable Energy98: 101-107.

5.       Khatami, M., Alijani, H. Q., Heli, H. and Sharifi, I. (2018). Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International, 44: 15596-15602.

6.       Prasankumar, T., Aazem, V.I., Raghavan, P., Ananth, K.P., Biradar, S., Ilangovan, R. and Jose, S. (2017). Microwave assisted synthesis of 3D network of Mn/Zn bimetallic oxide-high performance electrodes for supercapacitors. Journal of Alloys and Compounds695: 2835-2843.

7.       Mirzaei, A., Yerushalmi, L., Chen, Z., Haghighat, F. and Guo, J. (2018). Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: Optimization of parameters and toxicological evaluation. Water Research132: 241-251.

8.       Li, F. B. and Li, X. Z. (2002). The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere48(10): 1103-1111.

9.       Houshmand, A., Daud, W. M. A. W. and Shafeeyan, M. S. (2011). Tailoring the surface chemistry of activated carbon by nitric acid: study using response surface method. Bulletin of the Chemical Society of Japan84(11): 1251-1260.

10.    Khan, M. M., Lee, J. and Cho, M. H. (2014). Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry20(4): 1584-1590.

11.    Ahmad, M., Ahmed, E., Hong, Z. L., Jiao, X. L., Abbas, T. and Khalid, N. R. (2013). Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Applied Surface Science285: 702-712.

12.    Pouran, S. R., Bayrami, A., Aziz, A. A., Daud, W. M. A. W. and Shafeeyan, M. S. (2016). Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substituted-magnetite nanoparticles. Journal of Molecular Liquids222: 1076-1084.

13.    Zheng, X., Li, D., Li, X., Chen, J., Cao, C., Fang, J., Wang, J., He, Y. and Zheng, Y. (2015). Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties. Applied Catalysis B: Environmental168: 408-415.

14.    Faisal, M., Bouzid, H., Harraz, F. A., Ismail, A. A., Al-Sayari, S. A. and Al-Assiri, M. S. (2015). Mesoporous Ag/ZnO multilayer films prepared by repeated spin-coating for enhancing its photonic efficiencies. Surface and Coatings Technology263: 44-53.

15.    Anas, S., Rahul, S., Babitha, K. B., Mangalaraja, R. V. and Ananthakumar, S. (2015). Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations. Applied Surface Science355: 98-103.

16.    Jaafar, N. F. and Jalil, A. A. (2018). Photocatalytic degradation of phenol derivatives over silver supported on mesoporous titania nanoparticles. Malaysian Journal of Analytical Sciences, 22(5): 807-816.

17.    Kajbafvala, A., Zanganeh, S., Kajbafvala, E., Zargar, H. R., Bayati, M. R. and Sadrnezhaad, S. K. (2010). Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. Journal of Alloys and Compounds, 497 (1-2): 325-329.

18.    Tripathy, N., Ahmad, R., Kuk, H., Hahn, Y. B. and Khang, G. (2016). Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceramics International42(8): 9519-9526.

19.    Jaafar, N. F., Jalil, A. A., Triwahyono, S. and Shamsuddin, N. (2015). New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: Effect of microwave power density on formation of oxygen vacancies and Ti3+ defects. RSC Advances5(110): 90991-91000.

20.    Thostenson, E. T. and Chou, T. W. (1999). Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing30(9): 1055-1071.

21.    Hoang, S., Berglund, S. P., Hahn, N. T., Bard, A. J. and Mullins, C. B. (2012). Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. Journal of the American Chemical Society134(8): 3659-3662.

22.    Zhang, Z. K., Bai, M. L., Guo, D. Z., Hou, S. M. and Zhang, G. M. (2011). Plasma-electrolysis synthesis of TiO2 nano/microspheres with optical absorption extended into the infra-red region. Chemical Communications47(29): 8439-8441.

23.    Yuan, Z., Xiao-Xuan, W., Lv, H. and Wen-Chen, Z. (2007). EPR parameters and defect structures of the off-center Ti3+ ion on the Sr2+ site in neutron-irradiated SrTiO3 crystal. Journal of Physics and Chemistry of Solids68(9): 1652-1655.

24.    Bromiley, G. D. and Shiryaev, A. A. (2006). Neutron irradiation and post-irradiation annealing of rutile (TiO2−x): effect on hydrogen incorporation and optical absorption. Physics and Chemistry of Minerals33(6): 426-434.

25.    Suwarnkar, M. B., Dhabbe, R. S., Kadam, A. N. and Garadkar, K. M. (2014). Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceramics International40(4): 5489-5496.

26.    Zhou, H., Tan, X., Huang, J. and Chen, X. (2017). Sintering behavior, phase evolution and microwave dielectric properties of thermally stable Li2O-3MgO-mTiO2 ceramics (1≤m≤6). Ceramics International43(4): 3688-3692.

27.    Wang, W., Bai, W., Shen, B. and Zhai, J. (2015). Microwave dielectric properties of low temperature sintered ZnWO4-TiO2 composite ceramics. Ceramics International41: S435-S440.

28.    Kamarudin, N. H. N., Jalil, A. A., Triwahyono, S., Artika, V., Salleh, N. F. M., Karim, A. H., Jaafar, N. F., Sazegar, M. R., Mukti, R. R., Hameed, B. H. and Johari, A. (2014). Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release. Journal of Colloid and Interface Science421: 6-13.

29.    Komarneni, S., Rajha, R. K. and Katsuki, H. (1999). Microwave-hydrothermal processing of titanium dioxide. Materials Chemistry and Physics61(1): 50-54.

30.    Shi, M., Kang, L. and Jiang, Y. (2014). Microwave-assisted synthesis of mesoporous tungsten carbide/carbon for fuel cell applications. Catalysis Letters144(2): 278-284.

31.    Clark, D. E., Folz, D. C. and West, J. K. (2000). Processing materials with microwave energy. Materials Science and Engineering: A287(2): 153-158.

32.    Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. and Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation-A review. Journal of Environmental Management198: 78-94.

33.    Antonopoulou, M., Evgenidou, E., Lambropoulou, D. and Konstantinou, I. (2014). A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Research53: 215-234.

34.    Oturan, M. A. and Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology44(23): 2577-2641.

35.    Bokare, A. D. and Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials275: 121-135.

36.    Yuan, S., Sheng, Q., Zhang, J., Yamashita, H. and He, D. (2008). Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity. Microporous and Mesoporous Materials110(2-3): 501-507.

37.    Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee, J. and Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A2(3): 637-644.

38.    Huang, C.N., Bow, J.S., Zheng, Y., Chen, S.Y., Ho, N. and Shen, P. (2010). Nonstoichiometric titanium oxides via pulsed laser ablation in water. Nanoscale research letters5(6): 972-785.

39.    Naeem, M., Hasanain, S. K., Kobayashi, M., Ishida, Y., Fujimori, A., Buzby, S. and Shah, S. I. (2006). Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0≤x≤0.10) nanoparticles. Nanotechnology17(10): 2675-2680.

40.    Bazant, P., Kuritka, I., Munster, L. and Kalina, L. (2015). Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: A joint XPS, XRD and SEM study. Cellulose22(2): 1275-1293.

41.    Hsieh, P. T., Chen, Y. C., Kao, K. S. and Wang, C. M. (2008). Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A90(2): 317-321.

42.    Katoch, A., Choi, S.W., Kim, H. W. and Kim, S. S. (2015). Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism. Journal of Hazardous Materials286: 229-235.

43.    Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X. and Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces4(8): 4024-4030.




Previous                    Content                    Next