Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 462 - 471
DOI:
10.17576/mjas-2019-2303-10
SYNTHESIS OF MESOPOROUS NANOPARTICLES
VIA MICROWAVE-ASSISTED METHOD FOR PHOTOCATALYTIC DEGRADATION OF PHENOL
DERIVATIVES
(Sintesis Nanopartikel
Bermesoliang Melalui Kaedah Bantuan-Gelombang Mikro untuk Degradasi Fotomangkin
daripada Terbitan Fenol)
Nur Farhana Jaafar1*, Nor
Amira Marfur1, Nurfatehah Wahyuny Che Jusoh2, Yuki Nagao3,
Nur Hidayahtul Nazirah Kamarudin4,5,
Rohayu Jusoh6, Mohammad Anwar Mohamed Iqbal1
1School of Chemical Sciences,
Universiti
Sains Malaysia, 11800 USM Penang, Malaysia
2Department of Chemical Process Engineering, Malaysia-Japan
International Institute of Technology (MJIIT),
Universiti Teknologi Malaysia Kuala Lumpur, Jalan
Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
3School of Materials Science,
Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa 923-1292, Japan
4Research Center for Sustainable Process Technology
(CESPRO),
5Chemical Engineering Programme, Faculty of Engineering
and Built Environment,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
6Faculty of Chemical and Natural Resources Engineering,
Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300
Gambang, Kuantan, Pahang, Malaysia
*Corresponding
author: nurfarhana@usm.my
Received: 14 January 2019; Accepted: 26 April 2019
Abstract
Mesoporous transition metal oxides have gained attention widely since
they possess both optical and electronic properties of transition metal oxides
especially for photocatalytic degradation application. In this research work,
mesoporous titania nanoparticles (MTN) and mesoporous zinc oxide nanoparticles
(MZN) were successfully synthesized using microwave (MW)-assisted method to
degrade phenol derivatives under visible light irradiation. The microwave
sintering effect on the surface of these modified structures was studied to
relate with their photocatalytic performance. The characterization results
indicated that MW-assisted method was mainly contributed in generating Ti3+
site defects (TSD) and oxygen vacancies (OV) in MTN while for MZN contained
only OV as one of the strategies in light-absorption modification for TiO2
and ZnO to enhance their photoactivity. MTN also showed the degradation of
2-chlorophenol was up to 97% while degradation of phenol by MZN was up to 87%.
Keywords: mesoporous
nanoparticles, titanium dioxide, zinc oxide, microwave-assisted, photocatalytic
Abstrak
Logam oksida peralihan
bermesoliang telah mendapat perhatian secara meluas kerana mereka mempunyai kedua-dua
sifat optik dan elektronik bagi oksida logam peralihan terutamanya untuk
aplikasi degradasi fotomangkin. Dalam kajian ini, nanopartikel titania
bermesoliang (MTN) dan nanopartikel zink oksida bermesoliang (MZN) telah
berjaya disintesis menggunakan kaedah bantuan-gelombang mikro (MW) untuk
mendegradasi terbitan fenol di bawah sinaran cahaya nampak. Kesan pensinteran
gelombang mikro pada permukaan struktur yang diubahsuai telah dikaji untuk
dikaitkan dengan prestasi fotomangkin mereka. Keputusan pencirian menunjukkan
bahawa kaedah bantuan-MW merupakan penyumbang utama dalam pembentukan tapak Ti3+
cacat (TSD) dan kekosongan oksigen permukaan (OV) dalam MTN manakala bagi MZN
hanya mengandungi OV sebagai salah satu strategi untuk pengubahsuaian
penyerapan-cahaya bagi TiO2
and ZnO untuk meningkatkan fotoaktiviti mereka. MTN juga menunjukkan degradasi
2-klorofenol sehingga 97% manakala degradasi fenol oleh MZN sehingga 87%.
Kata kunci: nanopartikel bermesoliang, titanium dioksida, zink
oksida, bantuan-gelombang mikro, fotomangkin
References
1.
Aba-Guevara, C. G., Medina-Ramírez, I. E., Hernández-Ramírez,
A., Jáuregui-Rincón, J., Lozano-Álvarez, J. A. and Rodríguez-López, J. L.
(2017). Comparison of two synthesis methods on the preparation of Fe,
N-Co-doped TiO2 materials for degradation of pharmaceutical
compounds under visible light. Ceramics International, 43(6): 5068-5079.
2.
Reinosa, J. J., Docio, C. M. Á., Ramírez, V. Z. and Lozano, J.
F. F. (2018). Hierarchical nano ZnO-micro TiO2 composites: High UV
protection yield lowering photodegradation in sunscreens. Ceramics
International, 44(3): 2827-2834.
3.
Zhu, M., Chen, L., Gong, H., Zi, M. and Cao, B. (2014). A
novel TiO2 nanorod/nanoparticle composite architecture to improve
the performance of dye-sensitized solar cells. Ceramics
International, 40(1): 2337-2342.
4.
Baskar, G. and Soumiya, S. (2016). Production of biodiesel
from castor oil using iron(II) doped zinc oxide nanocatalyst. Renewable Energy, 98: 101-107.
5.
Khatami, M., Alijani, H. Q., Heli, H. and Sharifi, I. (2018).
Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its
biomedical efficiency. Ceramics International, 44: 15596-15602.
6.
Prasankumar, T., Aazem, V.I., Raghavan, P., Ananth, K.P.,
Biradar, S., Ilangovan, R. and Jose, S. (2017). Microwave assisted synthesis of
3D network of Mn/Zn bimetallic oxide-high performance electrodes for
supercapacitors. Journal
of Alloys and Compounds, 695:
2835-2843.
7.
Mirzaei, A., Yerushalmi, L., Chen, Z., Haghighat, F. and Guo,
J. (2018). Enhanced photocatalytic degradation of sulfamethoxazole by zinc
oxide photocatalyst in the presence of fluoride ions: Optimization of
parameters and toxicological evaluation. Water Research, 132: 241-251.
8.
Li, F. B. and Li, X. Z. (2002). The enhancement of
photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere, 48(10): 1103-1111.
9.
Houshmand, A., Daud, W. M. A. W. and Shafeeyan, M. S. (2011).
Tailoring the surface chemistry of activated carbon by nitric acid: study using
response surface method. Bulletin of the Chemical Society of
Japan, 84(11): 1251-1260.
10.
Khan, M. M., Lee, J. and Cho, M. H. (2014). Au@TiO2
nanocomposites for the catalytic degradation of methyl orange and methylene
blue: An electron relay effect. Journal of Industrial and Engineering
Chemistry, 20(4): 1584-1590.
11.
Ahmad, M., Ahmed, E., Hong, Z. L., Jiao, X. L., Abbas, T. and
Khalid, N. R. (2013). Enhancement in visible light-responsive photocatalytic
activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon
nanotubes. Applied
Surface Science, 285: 702-712.
12.
Pouran, S. R., Bayrami, A., Aziz, A. A., Daud, W. M. A. W.
and Shafeeyan, M. S. (2016). Ultrasound and UV assisted Fenton treatment of
recalcitrant wastewaters using transition metal-substituted-magnetite
nanoparticles. Journal
of Molecular Liquids, 222: 1076-1084.
13.
Zheng, X., Li, D., Li, X., Chen, J., Cao, C., Fang, J., Wang,
J., He, Y. and Zheng, Y. (2015). Construction of ZnO/TiO2 photonic
crystal heterostructures for enhanced photocatalytic properties. Applied
Catalysis B: Environmental, 168:
408-415.
14.
Faisal, M., Bouzid, H., Harraz, F. A., Ismail, A. A.,
Al-Sayari, S. A. and Al-Assiri, M. S. (2015). Mesoporous Ag/ZnO multilayer films
prepared by repeated spin-coating for enhancing its photonic
efficiencies. Surface
and Coatings Technology, 263:
44-53.
15.
Anas, S., Rahul, S., Babitha, K. B., Mangalaraja, R. V. and
Ananthakumar, S. (2015). Microwave accelerated synthesis of zinc oxide nanoplates
and their enhanced photocatalytic activity under UV and solar
illuminations. Applied
Surface Science, 355: 98-103.
16.
Jaafar, N. F. and Jalil, A. A. (2018). Photocatalytic
degradation of phenol derivatives over silver supported on mesoporous titania
nanoparticles.
Malaysian Journal of Analytical Sciences,
22(5): 807-816.
17.
Kajbafvala, A., Zanganeh, S., Kajbafvala, E., Zargar, H. R.,
Bayati, M. R. and Sadrnezhaad, S. K. (2010). Microwave-assisted synthesis of
narcis-like zinc oxide nanostructures. Journal of Alloys and Compounds, 497 (1-2): 325-329.
18.
Tripathy, N., Ahmad, R., Kuk, H., Hahn, Y. B. and Khang, G.
(2016). Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceramics
International, 42(8): 9519-9526.
19.
Jaafar, N. F., Jalil, A. A., Triwahyono, S. and Shamsuddin,
N. (2015). New insights into self-modification of mesoporous titania
nanoparticles for enhanced photoactivity: Effect of microwave power density on
formation of oxygen vacancies and Ti3+ defects. RSC Advances, 5(110): 90991-91000.
20.
Thostenson, E. T. and Chou, T. W. (1999). Microwave
processing: fundamentals and applications. Composites Part
A: Applied Science and Manufacturing, 30(9): 1055-1071.
21.
Hoang, S., Berglund, S. P., Hahn, N. T., Bard, A. J. and
Mullins, C. B. (2012). Enhancing visible light photo-oxidation of water with
TiO2 nanowire arrays via cotreatment with H2 and NH3:
Synergistic effects between Ti3+ and N. Journal of the
American Chemical Society, 134(8):
3659-3662.
22.
Zhang, Z. K., Bai, M. L., Guo, D. Z., Hou, S. M. and Zhang,
G. M. (2011). Plasma-electrolysis synthesis of TiO2 nano/microspheres
with optical absorption extended into the infra-red region. Chemical
Communications, 47(29): 8439-8441.
23.
Yuan, Z., Xiao-Xuan, W., Lv, H. and Wen-Chen, Z. (2007). EPR
parameters and defect structures of the off-center Ti3+ ion on the
Sr2+ site in neutron-irradiated SrTiO3 crystal. Journal of
Physics and Chemistry of Solids, 68(9): 1652-1655.
24.
Bromiley, G. D. and Shiryaev, A. A. (2006). Neutron
irradiation and post-irradiation annealing of rutile (TiO2−x):
effect on hydrogen incorporation and optical absorption. Physics and
Chemistry of Minerals, 33(6): 426-434.
25.
Suwarnkar, M. B., Dhabbe, R. S., Kadam, A. N. and Garadkar,
K. M. (2014). Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles
synthesized by a microwave assisted method. Ceramics
International, 40(4): 5489-5496.
26.
Zhou, H., Tan, X., Huang, J. and Chen, X. (2017). Sintering
behavior, phase evolution and microwave dielectric properties of thermally
stable Li2O-3MgO-mTiO2 ceramics (1≤m≤6). Ceramics
International, 43(4): 3688-3692.
27.
Wang, W., Bai, W., Shen, B. and Zhai, J. (2015). Microwave
dielectric properties of low temperature sintered ZnWO4-TiO2
composite ceramics. Ceramics International, 41: S435-S440.
28.
Kamarudin, N. H. N., Jalil, A. A., Triwahyono, S., Artika,
V., Salleh, N. F. M., Karim, A. H., Jaafar, N. F., Sazegar, M. R., Mukti, R. R.,
Hameed, B. H. and Johari, A. (2014). Variation of the crystal growth of
mesoporous silica nanoparticles and the evaluation to ibuprofen loading and
release. Journal
of Colloid and Interface Science, 421: 6-13.
29.
Komarneni, S., Rajha, R. K. and Katsuki, H. (1999).
Microwave-hydrothermal processing of titanium dioxide. Materials
Chemistry and Physics, 61(1): 50-54.
30.
Shi, M., Kang, L. and Jiang, Y. (2014). Microwave-assisted
synthesis of mesoporous tungsten carbide/carbon for fuel cell
applications. Catalysis
Letters, 144(2): 278-284.
31.
Clark, D. E., Folz, D. C. and West, J. K. (2000). Processing
materials with microwave energy. Materials Science and Engineering: A, 287(2): 153-158.
32.
Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. and Daud,
W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant
degradation-A review. Journal of Environmental Management, 198: 78-94.
33.
Antonopoulou, M., Evgenidou, E., Lambropoulou, D. and
Konstantinou, I. (2014). A review on advanced oxidation processes for the
removal of taste and odor compounds from aqueous media. Water Research, 53: 215-234.
34.
Oturan, M. A. and Aaron, J. J. (2014). Advanced oxidation
processes in water/wastewater treatment: principles and applications. A
review. Critical
Reviews in Environmental Science and Technology, 44(23): 2577-2641.
35.
Bokare, A. D. and Choi, W. (2014). Review of iron-free
Fenton-like systems for activating H2O2 in advanced
oxidation processes. Journal of Hazardous Materials, 275: 121-135.
36.
Yuan, S., Sheng, Q., Zhang, J., Yamashita, H. and He, D.
(2008). Synthesis of thermally stable mesoporous TiO2 and
investigation of its photocatalytic activity. Microporous and
Mesoporous Materials, 110(2-3): 501-507.
37.
Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee,
J. and Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for
visible light induced photoelectrochemical and photocatalytic studies. Journal of
Materials Chemistry A, 2(3): 637-644.
38.
Huang, C.N., Bow, J.S., Zheng, Y., Chen, S.Y., Ho, N. and
Shen, P. (2010). Nonstoichiometric titanium oxides via pulsed laser ablation in
water. Nanoscale
research letters, 5(6): 972-785.
39.
Naeem, M., Hasanain, S. K., Kobayashi, M., Ishida, Y.,
Fujimori, A., Buzby, S. and Shah, S. I. (2006). Effect of reducing atmosphere
on the magnetism of Zn1−xCoxO (0≤x≤0.10)
nanoparticles. Nanotechnology, 17(10): 2675-2680.
40.
Bazant, P., Kuritka, I., Munster, L. and Kalina, L. (2015).
Microwave solvothermal decoration of the cellulose surface by nanostructured
hybrid Ag/ZnO particles: A joint XPS, XRD and SEM study. Cellulose, 22(2): 1275-1293.
41.
Hsieh, P. T., Chen, Y. C., Kao, K. S. and Wang, C. M. (2008).
Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics
A, 90(2): 317-321.
42.
Katoch, A., Choi, S.W., Kim, H. W. and Kim, S. S. (2015).
Highly sensitive and selective H2 sensing by ZnO nanofibers and the
underlying sensing mechanism. Journal of Hazardous Materials, 286: 229-235.
43.
Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X.,
Zhang, X. and Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and
enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials
& Interfaces, 4(8): 4024-4030.