Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 451 - 461
DOI:
10.17576/mjas-2019-2303-09
POTENTIAL
OF CABBAGE EXTRACT (Brassica oleracea)
AS ANTI-FOULING AGENT IN ALKYD UNDERCOAT FOR MILD STEEL IN
SEAWATER
(Potensi Ekstrak Kubis (Brassica oleracea) Sebagai Ejen Anti-Kotoran bagi Cat Asas Alkid
untuk Keluli Lembut di dalam Air Laut)
Mohammad Fakhratul Ridwan
Zulkifli1, Norasidayu Mohd Radzi1, Suriani Mat Jusoh1,Jasnizat
Saidin2, Wan Mohd Norsani Wan Nik1*
1School of Ocean Engineering
2Institute of Marine Biotechnology
Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: niksani@umt.edu.my
Received: 1 January 2019; Accepted: 22 May 2019
Abstract
An investigation was conducted on cabbage
extract (Brassica oleracea) to
observe its function as green antifouling agent in alkyd undercoat for mild
steel in seawater. Cabbage extract shows 43.6% of inhibition efficiency towards
Pseudomonas aeruginosa bacteria at 15.525 g/mL cabbage concentration. FTIR
analysis shows the complexation between alkyd paint and cabbage extract where
the peak in OH, C-H and C=O have shifted indicating the chain scission of the
alkyd resin polymer backbone with cabbage extract. Weight gained analysis
reveals that coated mild steel incorporated with cabbage extract had reduced
the fouling attachment. However, weight gained value increases as the immersion
period increases for all coated samples. Morphological profile of coated mild
steel shows an attachment of fouling where prominent attachment can be observed
on coated mild steel without cabbage extract.
Keywords: anti-fouling, alkyd undercoat, Brassica oleracea, Pseudomonas aeruginosa, mild steel
Abstrak
Kajian telah dilaksanakan terhadap ekstrak
kubis untuk melihat fungsinya sebagai ejen anti-kotoran hijau di dalam cat asas
alkid untuk keluli lembut di dalam air laut. Ekstrak kubis menunjukkan sebanyak
43.6% kecekapan perencatan terhadap
bakteria Pseudomona aeruginosa pada ekstrak kubis berkepekatan 15.525 g/mL.
Analisis FTIR menunjukkan pengkompleksan antara pelitup cat asas alkid dan
ekstrak kubis di mana puncak OH, C-H dan C=O telah berubah menandakan berlaku tindakbalas guntingan pada
rantai utama polimer resin alkid yang mengandungi ekstrak kubis. Analisis
pertambahan berat menunjukkan keluli lembut bersadur yang mengandungi ekstrak
kubis telah mengurangkan kelekatan kotoran.
Walaubagaimanapun, nilai pertambahan berat telah meningkat apabila
tempoh rendaman meningkat untuk kesemua sampel bersadur. Profil morfologi keluli lembut bersadur
menunjukkan perlekatan kotoran di mana perlekatan ini lebih jelas kelihatan pada
keluli lembut bersadur tanpa gabungan ekstrak kubis.
Kata kunci: anti-kotoran, cat asas
alkid, Brassica oleracea, Pseudomonas aeruginosa, keluli lembut
References
1.
Finšgar,
M. and Jackson, J. (2014). Application of corrosion inhibitors for steels in
acidic media for the oil and gas industry: A review. Corrosion Science, 86: 17-41.
2.
Qian,
P. Y., Xu, Y. and Fusetani, N. (2009). Natural products as antifouling
compounds: recent progress and future perspectives. Biofouling, 26(2): 223-234.
3.
Abdullah,
S. H. (2012). Antifouling potential of mangrove bark condensed tannins (Rhizophora apiculata) as antifouling for
mild steel in seawater. Thesis of Bachelor Degree, Universiti Malaysia
Terengganu.
4.
Samsudin,
A. S., Khairul, W. M., and Isa, M. I. N. (2012). Characterization on the
potential of carboxy methylcellulose for application as proton conducting
biopolymer electrolytes. Journal of
Non-Crystalline Solids, 358: 1104-1112.
5.
Yayan,
J., Ghebremedhin, B. and Rasche, K. (2015). Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a
single university hospital center in Germany over a 10-year period. PLOS one, 10(10): 1-20.
6.
Hayek,
S. A. and Ibrahim, S. A. (2013). Current limitations and challenges with lactic
acid bacteria: A review. Food and
Nutrition Sciences, 4(11): 73-87.
7.
Tiwari,
B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P.
and Cullen, P. J. (2009). Application of natural antimicrobials for food
preservation. Journal of Agricultural and
Food Chemistry, 57(14): 5987-6000.
8.
Bajpai,
V. K., Rahman, A., Dung, N. T., Huh, M. K., and Kang, S. C. (2008). In vitro
inhibition of food spoilage and foodborne pathogenic bacteria by essential oil
and leaf extracts of Magnolia liliflora
Desr. Journal of Food Science, 73(6):
314-320.
9.
Balasundram,
N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and
agri-industrial by-products: Antioxidant activity, occurrence, and potential
uses. Food Chemistry, 99(1): 191-203.
10.
Nurioglu,
A. G., and Esteves, A. C. C. (2015). Non-toxic, non-biocide-release antifouling
coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B, 3(32):
6547- 6570.
11.
Teodoro,
G. R., Ellepola, K., Seneviratne, C. J. and Koga-Ito, C. Y. (2015). Potential
use of phenolic acids as anti-Candida agents: a review. Frontiers in Microbiology, 6: 1420.
12.
Cho,
J. Y., Kwon, E. H., Choi, J. S., Hong, S. Y., Shin, H. W. and Hong, Y. K.
(2001). Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. Journal of Applied Phycology, 13(2): 117-125.
13.
Dariva,
C. G. and Galio, A. F. (2014). Corrosion inhibitors–principles, mechanisms and
applications. In developments in corrosion protection. InTech Open Publisher.