Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 362 - 375

DOI: 10.17576/mjas-2019-2302-20

 

 

 

Nd:YAG LASER FABRICATION OF SILICON ELECTRODE PLATES FOR A COMBINED-MODE MICRO DIRECT METHANOL FUEL CELL

 

(Fabrikasi Plat Elektrod Silikon dengan Laser Nd:YAG untuk Sel Bahan Api Metanol Langsung Mikro Bermod Gabungan)

 

Umi Azmah Hasran1*, Siti Kartom Kamarudin1,3, Burhanuddin Yeop Majlis2, Wan Ramli Wan Daud3, Abdul Amir Hassan Kadhum3, Gandi Sugandi4

 

1Fuel Cell Institute

2Institute of Microengineering and Nanoelectronics

3Department of Chemical and Process Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Research Center for Electronics and Telecommunication

Lembaga Ilmu Pengetahuan Indonesia, Bandung, Indonesia

 

*Corresponding author:  umi.h@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

A silicon wafer was microfabricated to produce a new combined-mode flow field for the purpose of distributing methanol fuel throughout the anode side of a micro direct methanol fuel cell (DMFC). Active mode of operation, which generally produces more power, is more suited to higher power requirements compared with the passive mode. Different power outputs using different modes may be required during cell operation by devices that can potentially use the micro DMFC. The new flow field design in the electrode structure of the micro DMFC must manage the methanol fuel transport in either active or passive mode. The flow field area was designed to obtain 50% of the 1 cm2 active reaction area of the membrane electrode assembly. The proposed design was simulated using COMSOL multi-physics software and microfabricated by incorporating two flow field designs on the anode plate, namely, the grid flow field for the active mode and the porous flow field for the passive mode. The silicon wafer used to produce the electrode plate was a <100> p-type single-sided polished substrate and the MEMS-based microfabrication process to form the required electrode structures was dry etching with laser ablation. The current collector layers used were titanium/copper with a thickness of 1.1 μm and gold with a thickness of 0.18 µm. The completed single-cell micro DMFC obtained a maximum performance of 1.86 mW/cm2 at a voltage of 138.7 mV.

 

Keywords:  anode flow field, MEMS technology, active mode, passive mode, dry etching technique

 

Abstrak

Wafer silikon telah dimikrofabrikasi untuk menghasilkan medan aliran baru berbentuk mod gabungan bagi pengedaran bahan api metanol ke seluruh bahagian anod di dalam DMFC mikro. Mod operasi aktif, yang umumnya menghasilkan lebih banyak kuasa, adalah lebih sesuai dengan keperluan kuasa yang lebih tinggi berbanding mod operasi pasif. Output kuasa yang berbeza menggunakan mod yang berbeza dijangka diperlukan semasa operasi sel oleh peranti yang berpotensi menggunakan DMFC mikro. Reka bentuk medan aliran baru dalam struktur elektro DMFC mikro ini mesti menguruskan pengangkutan bahan api metanol sama ada dalam mod aktif atau pasif semasa operasi. Kawasan medan aliran direka untuk mendapatkan ~ 50% daripada kawasan reaksi aktif 1 cm2 himpunan elektrod membran. Reka bentuk baru ini disimulasikan menggunakan perisian multifizik COMSOL dan dimikrofabrikasi dengan menggabungkan dua reka bentuk medan aliran pada sekeping plat anod, iaitu medan aliran grid untuk mod aktif dan medan aliran poros untuk mod pasif. Wafer silikon yang digunakan untuk menghasilkan plat elektrod adalah substrat <100> tergilap sebelah jenis-p dan proses mikrofabrikasi yang berasaskan MEMS untuk membentuk struktur elektrod yang diperlukan adalah punaran kering dengan ablasi laser. Lapisan pengumpul arus adalah titanium/tembaga dengan ketebalan 1.1 μm dan emas dengan ketebalan 0.18 μm. Sel tunggal DMFC mikro yang telah disiapkan dapat memberikan prestasi maksimum 1.86 mW/cm2 pada voltan 138.7 mV.

 

Kata kunci:  medan aliran anod, teknologi MEMS, mod aktif, mod pasif, proses punaran kering

 

References

1.    Xu, C. and Zhao, T. S. (2007). In situ measurements of water crossover through the membrane for direct methanol fuel cells. Journal of Power Sources, 168(1): 143-153.

2.     Chen, X., Li, T., Shen, J. and Hu, Z. (2017). From structures, packaging to application: A system-level review for micro direct methanol fuel cell. Renewable and Sustainable Energy Reviews, 80: 669-678

3.     Chen, W., Yuan, W., Ye, G., Han, F. and Tang, Y. (2017). Utilization and positive effects of produced CO2 on the performance of a passive direct methanol fuel cell with a composite anode structure. International Journal of Hydrogen Energy, 42(23): 15613-15622. 

4.     Deng, H., Sang, S., Zhang, Y., Li, Z. and Liu, X. (2013). Investigations of silicon-based air-breathing micro direct methanol fuel cells with different anode flow fields. Microelectronic Engineering, 111: 180-184. 

5.     Yuan, W., Wang, A., Yan, Z., Tan, Z., Tang, Y. and Xia, H. (2016). Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields. Applied Energy, 179: 85-98. 

6.     Hasran, U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B. and Kadhum, A. A. H. (2011). A simple thermal oxidation technique and KOH wet etching process for fuel cell flow field fabrication. International Journal of Hydrogen Energy, 36(8): 5136-5142.

7.     Williams, K. R., Gupta, K. and Wasilik, M. (2003). Etch rates for micromachining processing - Part II. Journal of Microelectromechanical Systems, 12(6): 761-768.

8.     Sung, M.-F., Kuan, Y.-D., Chen, B.-X. and Lee, S.-M. (2011). Design and fabrication of light weight current collectors for direct methanol fuel cells using the micro-electro mechanical system technique. Journal of Power Sources, 196(14): 5897-5902.

9.     Hasran, U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B., Kadhum, A. A. H. and Ahmad, M. M. (2013). Optimization of hot pressing parameters in membrane electrode assembly fabrication by response surface method. International Journal of Hydrogen Energy, 38(22): 9484-9493. 

10.  Yuan, W. and Ma, B. (2008). Micro-machinability of monocrystal silicon by direct etching using excimer laser. Journal of Materials Processing Technology, 200(1): 390-397. 

11.  O'Neill, W. and Li, K. (2009). High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 15(2): 462-470.

12.  Yang, H. and Zhao, T. S. (2005). Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochimica Acta, 50(16-17): 3243-3252.

13.  Husna, J., Aliyu, M. M., Islam, M. A., Chelvanathan, P., Hamzah, N. R., Hossain, M. S. and Amin, N. (2012). Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia, 25(0): 55-61.

14.  Agilent Technologies (2008). A silicon-based air-breathing micro direct methanol fuel cell using MEMS technology. Semiconductor Manufacturing Technology – Elite Development.  Retrieved from http://www.paper.edu.cn/download_feature_paper.php?serial_number=AgilentF-02

15.  Onoe, S., Tanaka, H., Hoshino, K., Matsumoto, K. and Shimoyama, I. (2005). Miniature fuel cell with conductive silicon electrodes. Paper presented at the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea.

16.  Halim, F. A. L., Hasran, U. A., Masdar, M. S. and Kamarudin, S. K. (2017). Design of experiment approach for characterization and development of membrane electrode assembly in a passive vapor-feed direct methanol fuel cell. Paper presented at the 6th International Conference on Fuel Cell & Hydrogen Technology 2017, Putrajaya, Malaysia.




Previous                    Content                    Next