Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 362 - 375
DOI:
10.17576/mjas-2019-2302-20
Nd:YAG LASER FABRICATION OF SILICON ELECTRODE PLATES
FOR A COMBINED-MODE MICRO DIRECT METHANOL FUEL CELL
(Fabrikasi Plat Elektrod Silikon dengan Laser Nd:YAG
untuk Sel Bahan Api Metanol Langsung Mikro Bermod Gabungan)
Umi Azmah Hasran1*, Siti Kartom Kamarudin1,3,
Burhanuddin Yeop Majlis2, Wan Ramli Wan Daud3, Abdul Amir Hassan Kadhum3, Gandi Sugandi4
1Fuel Cell Institute
2Institute of Microengineering and Nanoelectronics
3Department of Chemical and Process Engineering
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
4Research Center for Electronics and Telecommunication
Lembaga Ilmu Pengetahuan Indonesia, Bandung, Indonesia
*Corresponding
author: umi.h@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
A
silicon wafer was microfabricated to produce a new combined-mode flow field for
the purpose of distributing methanol fuel throughout the anode side of a micro
direct methanol fuel cell (DMFC). Active mode of operation, which generally
produces more power, is more suited to higher power requirements compared with
the passive mode. Different power outputs using different modes may be required
during cell operation by devices that can potentially use the micro DMFC. The
new flow field design in the electrode structure of the micro DMFC must manage
the methanol fuel transport in either active or passive mode. The flow field
area was designed to obtain 50% of the 1 cm2 active reaction area of
the membrane electrode assembly. The proposed design was simulated using COMSOL
multi-physics software and microfabricated by incorporating two flow field
designs on the anode plate, namely, the grid flow field for the active mode and
the porous flow field for the passive mode. The silicon wafer used to produce
the electrode plate was a <100> p-type single-sided polished substrate
and the MEMS-based microfabrication process to form the required electrode
structures was dry etching with laser ablation. The current collector layers
used were titanium/copper with a thickness of 1.1 μm and gold with a thickness
of 0.18 µm. The completed single-cell micro DMFC obtained a maximum
performance of 1.86 mW/cm2 at a voltage of 138.7 mV.
Keywords: anode flow field, MEMS technology, active
mode, passive mode, dry etching technique
Abstrak
Wafer silikon telah
dimikrofabrikasi untuk menghasilkan medan aliran baru berbentuk mod gabungan
bagi pengedaran bahan api metanol ke seluruh bahagian anod di dalam DMFC mikro.
Mod operasi aktif, yang umumnya menghasilkan lebih banyak kuasa, adalah lebih
sesuai dengan keperluan kuasa yang lebih tinggi berbanding mod operasi pasif.
Output kuasa yang berbeza menggunakan mod yang berbeza dijangka diperlukan
semasa operasi sel oleh peranti yang berpotensi menggunakan DMFC mikro. Reka
bentuk medan aliran baru dalam struktur elektro DMFC mikro ini mesti menguruskan
pengangkutan bahan api metanol sama ada dalam mod aktif atau pasif semasa
operasi. Kawasan medan aliran direka untuk mendapatkan ~ 50% daripada kawasan
reaksi aktif 1 cm2 himpunan elektrod membran. Reka bentuk baru ini
disimulasikan menggunakan perisian multifizik COMSOL dan dimikrofabrikasi
dengan menggabungkan dua reka bentuk medan aliran pada sekeping plat anod,
iaitu medan aliran grid untuk mod aktif dan medan aliran poros untuk mod pasif.
Wafer silikon yang digunakan untuk menghasilkan plat elektrod adalah substrat
<100> tergilap sebelah jenis-p dan proses mikrofabrikasi yang berasaskan
MEMS untuk membentuk struktur elektrod yang diperlukan adalah punaran kering
dengan ablasi laser. Lapisan pengumpul arus adalah titanium/tembaga dengan
ketebalan 1.1 μm dan emas dengan ketebalan 0.18 μm. Sel tunggal DMFC mikro yang
telah disiapkan dapat memberikan prestasi maksimum 1.86 mW/cm2 pada
voltan 138.7 mV.
Kata kunci: medan aliran anod, teknologi MEMS, mod aktif, mod pasif,
proses punaran kering
References
1. Xu, C. and Zhao,
T. S. (2007). In situ measurements of water crossover through the membrane for
direct methanol fuel cells. Journal of
Power Sources, 168(1): 143-153.
2. Chen,
X., Li, T., Shen, J. and Hu, Z. (2017). From structures, packaging to
application: A system-level review for micro direct methanol fuel cell. Renewable and Sustainable Energy Reviews, 80:
669-678
3. Chen,
W., Yuan, W., Ye, G., Han, F. and Tang, Y. (2017). Utilization and positive
effects of produced CO2 on the performance of a passive direct
methanol fuel cell with a composite anode structure. International Journal of Hydrogen Energy, 42(23): 15613-15622.
4. Deng,
H., Sang, S., Zhang, Y., Li, Z. and Liu, X. (2013). Investigations of
silicon-based air-breathing micro direct methanol fuel cells with different
anode flow fields. Microelectronic
Engineering, 111: 180-184.
5. Yuan,
W., Wang, A., Yan, Z., Tan, Z., Tang, Y. and Xia, H. (2016). Visualization of
two-phase flow and temperature characteristics of an active liquid-feed direct
methanol fuel cell with diverse flow fields. Applied Energy, 179: 85-98.
6. Hasran,
U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B. and Kadhum,
A. A. H. (2011). A simple thermal oxidation technique and KOH wet etching
process for fuel cell flow field fabrication. International Journal of Hydrogen Energy, 36(8): 5136-5142.
7. Williams,
K. R., Gupta, K. and Wasilik, M. (2003). Etch rates for micromachining
processing - Part II. Journal of
Microelectromechanical Systems, 12(6): 761-768.
8. Sung,
M.-F., Kuan, Y.-D., Chen, B.-X. and Lee, S.-M. (2011). Design and fabrication
of light weight current collectors for direct methanol fuel cells using the
micro-electro mechanical system technique. Journal
of Power Sources, 196(14): 5897-5902.
9. Hasran,
U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B., Kadhum,
A. A. H. and Ahmad, M. M. (2013). Optimization of hot pressing parameters in
membrane electrode assembly fabrication by response surface method. International Journal of Hydrogen Energy, 38(22):
9484-9493.
10. Yuan, W. and Ma, B. (2008).
Micro-machinability of monocrystal silicon by direct etching using excimer
laser. Journal of Materials Processing
Technology, 200(1): 390-397.
11. O'Neill,
W. and Li, K. (2009). High-quality micromachining of silicon at 1064 nm using a
high-brightness MOPA-based 20-W Yb fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 15(2):
462-470.
12. Yang, H. and Zhao, T. S. (2005). Effect of
anode flow field design on the performance of liquid feed direct methanol fuel
cells. Electrochimica Acta, 50(16-17):
3243-3252.
13. Husna, J., Aliyu, M. M., Islam, M. A.,
Chelvanathan, P., Hamzah, N. R., Hossain, M. S. and Amin, N. (2012). Influence
of annealing temperature on the properties of ZnO thin films grown by
sputtering. Energy Procedia, 25(0):
55-61.
14. Agilent Technologies (2008). A silicon-based
air-breathing micro direct methanol fuel cell using MEMS technology. Semiconductor Manufacturing Technology –
Elite Development. Retrieved from http://www.paper.edu.cn/download_feature_paper.php?serial_number=AgilentF-02
15. Onoe, S., Tanaka, H., Hoshino, K., Matsumoto,
K. and Shimoyama, I. (2005). Miniature fuel cell with conductive silicon
electrodes. Paper presented at the 13th International Conference on
Solid-State Sensors, Actuators and Microsystems, Seoul, Korea.
16. Halim, F. A. L., Hasran, U. A., Masdar, M. S. and
Kamarudin, S. K. (2017). Design of experiment approach for characterization and
development of membrane electrode assembly in a passive vapor-feed direct
methanol fuel cell. Paper presented at the 6th International
Conference on Fuel Cell & Hydrogen Technology 2017, Putrajaya, Malaysia.