Malaysian Journal of Analytical Sciences Vol 23
No 2 (2019): 247 - 254
DOI:
10.17576/mjas-2019-2302-09
EFFECT OF TEMPERATURE ON THE CATALYTIC ACTIVITY OF NEW SYMMETRICAL
TETRADENTATE PALLADIUM(II) SCHIFF BASE COMPLEXES IN COPPER-FREE SONOGASHIRA
REACTION
(Kesan Suhu Terhadap Aktiviti Pemangkinan Kompleks
Baru Paladium(II) Tetradentat Bes Schiff Bersimetri dalam Tindak Balas
Sonogashira Tanpa Kuprum)
Shahrul Nizam Ahmad1*, Hadariah
Bahron1, Amalina Mohd Tajuddin2
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
2Atta-ur-Rahman Institute for Natural Product Discovery,
Level 9, Building FF3, UiTM Selangor, Kampus
Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
*Corresponding author: shahrulnizam85@gmail.com
Received:
29 August 2018; Accepted: 18 February 2019
Abstract
This paper reports the synthesis of two
tetradentate Schiff bases namely 2,2'-(((2,2-dimethylpropane-1,3-diyl)
bis(azanylylidene))bis(methanylylidene))bis(4-methoxylphenol), LM, and
2,2'-(((2,2-dimethylpropane-1,3-diyl)bis
(azanylylidene))bis(methanylylidene))bis(4-nitrophenol), LN. The Schiff bases
were reacted with palladium(II) acetate in 1:1 molar ratio yielding two
palladium(II) complexes, PdLN and PdLM. The compounds were characterized
through elemental analysis, infrared spectroscopy, 1H and 13C
Nuclear Magnetic Resonance (NMR), magnetic susceptibility, molar conductivity
and melting point. Complexation was indicated to have occurred
by the shifting
of the characteristic n(C=N), n(C-O) and d(HC=N)
peaks. This was supported by appearance of new peaks of n(M-N) and n(M-O) as well as disappearance of d(O-H) peak on the IR and 1H
NMR spectra of the palladium(II) complexes. The diamagnetic and
non-electrolytic nature of the complexes suggested square planar d8 palladium(II) geometry and
absence of counter ions, respectively. The catalytic activity of the
palladium(II) complexes was investigated for copper-free Sonogashira reaction
between iodobenzene and phenylacetylene in dimethylsulfoxide (DMSO) at 80 oC,
100 oC and 140 oC. The conversion of iodobenzene at 12 h
reaction time was monitored by GC-FID. At 100 oC, the most active
catalyst was PdLN, indicating that the electron withdrawing substituent –NO2,
has the ability to enhance catalytic properties of the complexes. At 140 oC,
both palladium(II) complexes successfully converted 100% of iodobenzene.
Keywords: Schiff base, palladium(II) complexes,
Sonogashira, temperature change
Abstrak
Kertas
kajian ini melaporkan sintesis dua bes Schiff tetradentat iaitu 2,2'-(((2,2-dimetilpropana-1,3-diyl)bis(azanililidena))-bis(methanililidena))bis(4-metoksilfenol), LM dan
2,2'-(((2,2-dimetilpropana-1,3-diyl)bis(azanililidena))bis(methanili-lidena))bis(4-nitrofenol), LN. Bes Schiff tersebut telah
ditindakbalaskan dengan palladium(II) asetat dengan nisbah mol 1:1,
menghasilkan dua kompleks palladium(II), iaitu PdLN dan PdLM. Sebatian telah
dicirikan melalui analisis unsur, spektroskopi inframerah (IM), Resonans Magnetik
Nuklear (RMN) 1H dan 13C, kerentanan magnetik,
kekonduksian molar dan takat lebur. Pengkompleksan ditunjukkan telah berlaku
dengan penganjakan puncak n(C=N), n(C-O) dan d(HC=N). Ia dikukuhkan lagi dengan munculnya puncak baru n(M-N) dan n(M-O) dan hilangnya puncak d(O-H) pada spektrum
IM dan 1H RMN kompleks paladium(II). Sifat diamagnetik dan bukan
elektrolit komplek mencadangkan geometri satah segiempat sama d8 paladium(II) dan ketiadaan
ion kaunter, masing-masing. Aktiviti pemangkinan komplek paladium(II) dikaji
bagi tindakbalas Sonogashira tanpa kuprum antara iodobenzena dan fenilasetilena
dalam dimetilsulfoksida (DMSO) pada 80 oC, 100 oC dan 140
oC. Peratusan penukaran iodobenzena pada jam ke-12 tindak balas
dipantau dengan GC-FID. Pada 100 oC,
pemangkin yang paling aktif adalah PdLN, menandakan bahawa kumpulan tertukar
ganti penarik elektron, –NO2, boleh meningkatkan sifat pemangkinan
kompleks. Pada 140 oC, kedua-dua kompleks paladium(II) berjaya
menukarkan 100% iodobenzena.
Kata kunci: Bes Schiff, kompleks paladium(II), Sonogashira, perubahan
suhu
References
1.
Qin, W.,
Long, S., Panunzio, M. and Biondi, S. (2013). Schiff bases: A short survey on
an evergreen chemistry tool. Molecules, 18(10): 12264 – 12289.
2.
Abu-Dief, A. M. and Mohamed, I. M. A. (2015). A review
on versatile applications of transition metal complexes incorporating Schiff
bases. Beni-Suef University Journal of Basic and Applied Sciences, 4(2): 119 – 133.
3.
Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. and
Brunel, J. M. (2007). Synthesis, antibacterial, antifungal and antiviral
activity evaluation of some new bis-Schiff bases of isatin and their
derivatives. Molecules, 12(8):
1720 - 1730.
4.
Fateh, A., Aliofkhazraei, M. and Rezvanian, A. R. (2017).
Review of corrosive environments for copper and its corrosion inhibitors. Arabian
Journal of Chemistry. In Press.
5.
Gupta, K. C. and Sutar, A. K. (2008). Catalytic activities of
Schiff base transition metal complexes. Coordination Chemistry Reviews, 252: 1420 – 1450.
6.
Chinchilla, R. and Najera, C. (2011). Recent advances in
Sonogashira reactions. Chemical Society Reviews, 40(10): 5084 – 5121.
7.
Prabhu, R. N. and Pal, S. (2015). Copper-free Sonogashira
reactions catalyzed by a palladium(II) complex bearing pyrenealdehyde
thiosemicarbazonate under ambient conditions. Tetrahedron Letters, 56(37): 5252–5256.
8.
Siemsen, P., Livingston, R. C. and Diederich, F. (2000).
Acetylenic coupling: A powerful tool in molecular construction. Angewandte Chemie International Edition, 39(15):
2632 - 2657.
9.
Bakherad, M., Amin, A. H., Keivanloo, A., Bahramian, B. and
Raeissi, M. (2010). Copper-and phosphine-free Sonogashira coupling reactions of
aryl iodides catalyzed by an N,N-bis (naphthylideneimino) diethylenetriamine-functionalized
polystyrene resin supported Pd(II) complex under aerobic conditions. Tetrahedron Letters, 51(43): 5653 -
5656.
10.
Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in
catalysis: Practical aspects. Chemical
Society Reviews, 33(7): 410-421.
11.
Bakherad, M., Keivanloo, A., Bahramian, B. and Hashemi, M.
(2009). Copper-free Sonogashira coupling reactions catalyzed by a water-soluble
Pd–salen complex under aerobic conditions. Tetrahedron
Letters, 50(14): 1557 - 1559.
12.
Das, S. K., Sarmah, M. and Bora, U. (2017). An ambient
temperature Sonogashira cross-coupling protocol using 4-aminobenzoic acid as
promoter under copper and amine free conditions. Tetrahedron Letters, 58(22): 2094 - 2097.
13.
He, Y. and Cai, C. (2011). Heterogeneous copper-free
Sonogashira coupling reaction catalyzed by a reusable palladium Schiff base
complex in water. Journal of
Organometallic Chemistry, 696(13): 2689-2692.
14.
Pavia, D. L., Lampman, G. M., Kriz, G. S. and Engel, R. G.
(2005). Introduction to organic laboratory techniques: a small scale
approach. Cengage Learning.
15.
Aranha, P. E., dos Santos, M. P., Romera, S. and Dockal, E.
R. (2007). Synthesis, characterization, and spectroscopic studies of
tetradentate Schiff base chromium (III) complexes. Polyhedron, 26(7): 1373 -1382.
16.
Bahron, H., Ahmad, S. N., Tajuddin, A. M. and Kadir, S. I. A.
S. A. (2017). Substituent effect on catalytic activity of palladium(II) Schiff
base complexes for Sonogashira reaction. Pertanika
Journal of Science and Technology, 25: 115 – 124.
17.
Amalina, M. T., Hadariah, B., Karimah, K., Wan, N. W. I. and
Bohari, M. Y. (2012). Synthesis and characterisation of palladium(II) Schiff
base complexes and their catalytic activities for Suzuki coupling
reaction. Malaysian Journal of
Analytical Sciences, 16(1): 79-87.
18.
Rosa, D. S., Antelo, F., Lopes, T. J., Moura, N. F. D. and
Rosa, G. R. (2015). Effects of solvent, base, and temperature in the
optimisation of a new catalytic system for Sonogashira cross-coupling using NCP
pincer palladacycle. Quimica Nova, 38(5):
605 - 608.
19.
Guan, J. T., Yu, G. A., Chen, L., Qing Weng, T., Yuan, J. J.
and Liu, S. H. (2009). CuI/PPh3-catalyzed Sonogashira coupling
reaction of aryl iodides with terminal alkynes in water in the absence of
palladium. Applied Organometallic
Chemistry, 23(2): 75-77.
20.
Ahmad, S. N. (2018)