Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 237 - 246

DOI: 10.17576/mjas-2019-2302-08

 

 

 

SYNTHESIS AND MOLECULAR DOCKING OF 2,4,5-TRISUBSTITUTED-1,3-THIAZOLE DERIVATIVES AS ANTIBACTERIAL AGENTS

 

(Sintesis dan Penyatuan Molekul Terbitan 1,3-Tiazol Berpenggantian-2,4,5 Sebagai Agen Antibakteria)

 

Iswatun Hasanah Abdullah Ripain1, Norashikin Roslan1, Nurul Shazana Norshahimi1, Siti Salwa Mohamed Salleh1, Noraslinda Muhamad Bunnori2, Nurziana Ngah1*

 

1Department of Chemistry, Kulliyyah of Science

2Department of Biotechnology, Kulliyyah of Science

International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author:  nurziana@iium.edu.my

 

 

Received: 19 August 2018; Accepted: 18 February 2019

 

 

Abstract

The emergence of antibiotic resistance against bacterial strains has attracted great interest in the discovery and development of new antibacterial agents. Thiazole derivatives have been widely used in the biological as well as pharmacological fields and their efficiency as pharmaceutical drugs are well established. In this study, a series of thiazole derivatives were synthesized in reaction between 3-chloroacetyl acetone and ammonium thiocyanate followed by incorporating selected amines in one-pot synthesis manner. The compounds were structurally characterized by Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H NMR), Ultraviolet-Visible (UV-Vis) and Gas Chromatography-Mass Spectrometry (GC-MS). Their antibacterial properties were screened using disc diffusion technique against selected Gram-positive (Bacillus cereus and Staphylococcus epidermidis) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) with T3 exhibited the most potent antibacterial activity. Molecular docking studies were also performed against Glucosamine-6-phosphate (GlcN-6-P) synthase which is known as the essential building block of most bacteria. The docking result displayed that T3 exhibited the minimum binding energy of -7.09 kcal mol-1 as compared to T1 and T2 with -6.49 and -6.76 kcal mol-1, respectively which is in agreement with antibacterial result. The output of this preliminary study will contribute in structural enhancement in drug discovery. 

 

Keywords:  thiazole derivatives, antibacterial, disc diffusion, molecular docking, GlcN-6-P synthase  

 

Abstrak

Kewujudan rintangan terhadap bakteria telah menarik minat dalam penemuan dan perkembangan agen antibakteria yang terkini. Terbitan tiazol telah digunakan dengan meluas dalam bidang biologi dan farmakologi di mana keberkesanannya sebagai ubat farmaseutikal telah ditemui. Dalam kajian ini, terbitan tiazol telah disintesis dengan menindakbalaskan α-haloketon (3-kloroasetil aseton), ammonium tiosianat dan beberapa sebatian amina terpilih secara sintesis satu pot. Produk tindak balas yang terhasil telah dicirikan dengan Transformasi Fourier-Inframerah (FTIR), Proton Resonans Magnet Nukleus (1H NMR), Ultralembayung-Sinar Nampak (UV-Vis) serta Kromatografi Gas-Spektrometer Jisim (GC-MS). Sifat antibakteria sebatian ini telah disaring menggunakan teknik serapan cakera terhadap bakteria Gram-positif (Bacillus cereus dan Staphylococcus epidermidis) dan Gram-negatif (Escherichia coli dan Pseudomonas aeruginosa) dengan T3 menunjukkan aktiviti antibakteria yang paling berkesan. Penyatuan molekul telah dilakukan terhadap enzim Glukosamina-6-fosfat sintase (GlcN-6-P) yang merupakan unsur binaan penting bagi kebanyakan bakteria. Merujuk kepada keputusan penyatuan molekul, T3 menunjukkan tenaga pengikatan yang paling minima iaitu -7.09 kcal mol-1 berbanding T1 dan T2 masing-masing pada -6.49 dan -6.76 kcal mol-1, menunjukkan nilai-nilai ini bersetuju dengan keputusan saringan antibakteria. Keputusan kajian awal ini akan menyumbang kepada penambahbaikan struktur untuk penghasilan ubat.

 

Kata kunci:  terbitan tiazol, antibakteria, resapan cakera, penyatuan molekul, GlcN-6-P sintase

 

References

1.          Tran, T., Nguyen, T., Do, T., Huynh, T., Tran, C. and Thai, K. (2012). Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules, 17(6): 6684 – 6696.

2.          Kotb, E. R., Anwar, M. M., Abbas, H. S. and El-Moez, S. I. A. (2013). A concise synthesis and antimicrobial activity of a novel series of naphthylpyridine-3-carbonitrile compounds. Acta Poloniae Pharmaceutica-Drug Research, 70(4): 667 – 679.

3.          Ejideke, I. P. and Ajibade, P. A. (2015). Synthesis, characterization, antioxidant and antibacterial studies of some metal (II) complexes of tetradentate Schiff base ligand: (4E)-4-[(2-{(E)-[1-(2,4-dihydroxyphenyl) ethylidene] amino}ethyl)imino]penta-2-one. Bioinorganic Chemistry and Applications, 9: 1 – 9.

4.          Dayt, D. and Serra, G. (2010). Thiazole and oxazole alkaloids: Isolation and synthesis. Marine Drugs, 8: 2755 – 2780.

5.          Kaur, K., Kaur, R. and Dhir, G. N. (2014). Synthesis and biological of amino acid and peptide conjugates of Rhein derivatives. Journal of Advanced Pharmaceutical Education and Resource, 4(3): 311 – 318.

6.          Penta, S. and Vedula, R. R. (2012). A facile one-pot synthesis of thiazole-pyrazole derivatives via multicomponent approach. Organic Communications, 5(3): 143 – 149.

7.          Bodireddy, M. R., Mohinuddin, P. M. K., Gundala, T. R. and Reddy, G. (2016). Lactic acid-mediated tandem one-pot synthesis of 2-aminothiazole derivatives: A rapid, scalable and sustainable process. Organic Chemistry, 2: 1 – 13.

8.          Kołazcek, A., Fusiarz, I., Ławecka, J. and Braowska, D. (2014). Biological activity and synthesis of sulfonamide derivatives: A brief review. Chemik Er Zeitung, 68(7): 620 – 628.

9.          Kushwara, N., Kushwara, S. K. S. and Rai, A. K. (2012). Biological activities of thiadiazole derivatives: A review. International Research of Chemtech Research, 4(2): 517 – 531.

10.        Vijesh, A. M., Isloor, A. M., Telkar, S., Arulmoli, T. and Fun, H. K. (2013). Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian Journal of Chemistry, 6: 197– 204.

11.        Pawlak, D., Stolarska, M., Wojciechowski, M. and Andruszkiewicz, R. (2015). Synthesis, anticandial activity of N3-(4-methoxyfumaroyl) -(S)-2,3-diaminopropanoic amide derivatives–novel inhibitors of glucosamine-6-phosphate synthase. European Journal of Medicinal Chemistry, 90: 577 – 582.

12.        Milewski, S. (2012). Glucosamine-6-phosphate synthase –the multi-facets enzyme. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1597(2): 173 –192.

13.        Aouad, M. R., Mayaba, M. M., Naqvi, A., Bardaweel, S. K., Al-blewi, F. F., Messali, M. and Rezki, N. (2017). Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4- triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chemistry Central Journal, 11(1): 1–13.

14.        Krishna, B. G., Sarojini, B. K. and Darshanraj, C. G. (2010). Synthesis, characterization, molecular docking and evaluation of antibacterial, antiproliferative and anti-inflammatory properties of new pyridinyl substituted triazole derivatives. Der Pharma Chemica, 6(4): 345 – 361.

15.        Rajasekaran, A., Sivakumar, K. K., Sureshkumar, K. and Manjushree, M. (2017). Design, synthesis, characterization and in-vitro antimicrobial activity of some hybridized triazole scaffolds. Future Journal of Pharmaceutical Sciences, 3(1): 1 – 10.

16.        Tian, G. and Haffner, C. D. (2001). Linear relationships between binding energy of time-dependent inhibition of steroid 5α- reductase by Ϫ1-4-azasteroids. The Journal of Biological Chemistry, 276(24): 21359 – 21364.

17.        Koochak, H., Seyyednejad, S. M. and Motamedi, H. (2010). Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pacific Journal of Tropical Medicine, 3(3): 180 – 184.

18.        Mouilleron, S., Badet-Deisot, M. A. and Golielli-Pimpaneau, B. (2008). Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. Journal of Molecular Biology, 377(4): 1174 – 1185.

19.        Jumal, J., Latip, J. and Yamin, B. M. (2006). 2-(4-fluoroanilino)-4,5-dimethyl-1,3-thiazole. Acta Crystallographica Section E Structure Report Online, 62(4): 3305 – 3306.

20.        Patel, D. D., Patel, M. S., Patel, V. S. and Patel, K. C. (2014). Synthesis and benzothiazole derivatives, their Schiff bases and its anti-infective biological activities. International Journal of Advanced Research, 2 (3): 1048 –1054.

21.        Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. and Clercq, E. D. (2008). Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-nes as anti-HIV agents. European Journal of Medicinal Chemistry, 43: 2800 – 2806.

22.        Khattab, S. N. (2005). Synthesis and biological activity of novel amino acid-(n’-benzoyl) hydrazine and amino acid-(n’-nicotinoyl) hydrazine derivatives. Molecules, 10: 1218 – 1228.

23.        Luzina, E. L. and Popov, A. V. (2009). Synthesis and anticancer activity of n-bis(trifluoromethyl)alkyl-n’-thiazolyl and n-bis(trifluoromethyl)alkyl-n’-benzothiazolyl ureas. European Journal of Medicinal Chemistry, 44 (2009): 4944 – 4953.

24.        Upmanyu, N., Kumar, S., Shah, K. and Mishra, P. (2012). synthesis and antimicrobial studies of some 4-(substituted)-ethanoylamino-3-mercapto-5-(4-substituted) phenyl-1, 2, 4-triazoles. Dhaka University Journal of Pharmaceutical Sciences, 11(1): 7 – 18. 

25.        Anbazhagan, R. and Sankaran, K. R. (2013). Syntheses, spectral characterization, single crystal X-ray diffraction and DFT computational studies of novel derivatives. Journal of Molecular Structure, 1050: 73 – 80.

26.        Nalwa, H. S., Hanack, M., Pawlowski, G. and Engel, M. K. (1999). Third-order nonlinear optical properties of porphyrazine, phthalocyanine and naphthalocyanine germanium derivatives: demonstrating the effect of π-conjugation length on third-order optical nonlinearity of two-dimensional molecules. Chemical Physics, 245: 17 – 26.

27.        Qiao, L. and Hao, S. (2018). Novel trifluoromethylcoumarinyl urea derivatives: synthesis, characterization, fluoroscence, and bioactivity. Molecules, 23(600): 1 – 14.

28.        Saylam, A., Seferoglu, Z. and Ertan, N. (2008). Synthesis of new hetarylazoindole dyes from some 2-aminothiazole derivatives. Russian Journal of Organic Chemistry, 44(4): 587 – 594.

29.        Arora, P., Narang, R., Bhatia, S., Nayak, S. K., Singh, S., K. and Narasimhan, B. (2015). Synthesis, molecular docking and QSAR studies of 2, 4-disubsituted thiazoles as antimicrobial agents. Journal of Applied Pharmaceutical Science, 5(2): 28 – 42.

30.        Majik, M. S., Rodrigues, C., Mascarenhas, S. and Souza, L. D. (2014). Bioorganic chemistry design and synthesis of marine natural product-based 1 H-indole-2, 3-dione scaffold as a new antifouling/ antibacterial agent against fouling bacteria. Bioorganic Chemistry, 54: 89 – 95.

31.        Shia, J. S., Al-Bayati, R. I. H., Abdula, A. M. and Saour, K. Y. (2015). Docking study of some N-[4-(4-arylidene)-2-(4-substituted-phenyl)-5-oxo-4, 5-dihydro-imidazol-1-yl] benzenesulfonamide derivatives against glucosamine-6-phosphate synthase. International Journal of Chemical Sciences, 13(4): 1982 – 1990.

32.        Venkatesh, T., Bodke, Y. D., Kenchappa, R. and Telkar, S. (2016). Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Medicinal Chemistry, 6 (7): 440 – 448.

33.        Fikrika, H., Ambarsari, L. and Sumaryada, T. (2009). Molecular docking studies of catechin and its derivatives as anti-bacterial inhibitor for glucosamine-6-phosphate synthase. Earth and Environmental Science, 31: 1 – 6.

34.        Sarojini, B. K., Krishna, B. G., Darshanraj, C. G., Bharath, B. R. and Manjunatha, H. (2010). Synthesis, characterization, in vitro and molecular docking studies of new 2, 5-dichloro thienyl substituted thiazole derivatives for antimicrobial properties. European Journal of Medicinal Chemistry, 45(8): 3490 – 3496.

35.        Venkatesh, T., Bodke, Y. D., Kenchappa, R. and Telkar, S. (2016). Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Medicinal Chemistry, 6(7): 440 – 448.

 




Previous                    Content                    Next