Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 237 - 246
DOI:
10.17576/mjas-2019-2302-08
SYNTHESIS
AND MOLECULAR DOCKING OF 2,4,5-TRISUBSTITUTED-1,3-THIAZOLE DERIVATIVES AS
ANTIBACTERIAL AGENTS
(Sintesis dan Penyatuan Molekul Terbitan 1,3-Tiazol
Berpenggantian-2,4,5 Sebagai Agen Antibakteria)
Iswatun Hasanah
Abdullah Ripain1, Norashikin Roslan1, Nurul Shazana
Norshahimi1, Siti Salwa Mohamed Salleh1, Noraslinda
Muhamad Bunnori2, Nurziana Ngah1*
1Department of Chemistry, Kulliyyah of Science
2Department of Biotechnology, Kulliyyah of Science
International Islamic University Malaysia, Kuantan Campus, Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
*Corresponding
author: nurziana@iium.edu.my
Received: 19
August 2018; Accepted: 18 February 2019
Abstract
The emergence of antibiotic resistance
against bacterial strains has attracted great interest in the discovery and
development of new antibacterial agents. Thiazole derivatives have been widely
used in the biological as well as pharmacological fields and their efficiency
as pharmaceutical drugs are well established. In this study, a series of
thiazole derivatives were synthesized in reaction between 3-chloroacetyl
acetone and ammonium thiocyanate followed by incorporating selected amines in
one-pot synthesis manner. The compounds were structurally characterized by
Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H
NMR), Ultraviolet-Visible (UV-Vis) and Gas Chromatography-Mass Spectrometry
(GC-MS). Their antibacterial properties were screened using disc diffusion
technique against selected Gram-positive (Bacillus cereus and Staphylococcus
epidermidis) as well as Gram-negative bacteria (Escherichia coli and
Pseudomonas aeruginosa) with T3 exhibited the most potent
antibacterial activity. Molecular docking studies were also performed
against Glucosamine-6-phosphate (GlcN-6-P) synthase which is known as the
essential building block of most bacteria. The docking result displayed that T3
exhibited the minimum binding energy of -7.09 kcal mol-1 as compared
to T1 and T2 with -6.49 and -6.76 kcal mol-1,
respectively which is in agreement with antibacterial result. The output of
this preliminary study will contribute in structural enhancement in drug
discovery.
Keywords: thiazole derivatives,
antibacterial, disc diffusion, molecular docking, GlcN-6-P synthase
Abstrak
Kewujudan
rintangan terhadap bakteria telah menarik minat dalam penemuan dan perkembangan
agen antibakteria yang terkini. Terbitan tiazol telah digunakan dengan meluas
dalam bidang biologi dan farmakologi di mana keberkesanannya sebagai ubat
farmaseutikal telah ditemui. Dalam kajian ini, terbitan tiazol telah disintesis
dengan menindakbalaskan α-haloketon (3-kloroasetil aseton), ammonium tiosianat dan
beberapa sebatian amina terpilih secara sintesis satu pot. Produk tindak balas
yang terhasil telah dicirikan dengan Transformasi Fourier-Inframerah (FTIR),
Proton Resonans Magnet Nukleus (1H NMR), Ultralembayung-Sinar Nampak
(UV-Vis) serta Kromatografi Gas-Spektrometer Jisim (GC-MS). Sifat antibakteria
sebatian ini telah disaring menggunakan teknik serapan cakera terhadap bakteria
Gram-positif (Bacillus cereus dan Staphylococcus epidermidis) dan
Gram-negatif (Escherichia coli dan Pseudomonas aeruginosa) dengan
T3 menunjukkan aktiviti antibakteria yang paling berkesan. Penyatuan
molekul telah dilakukan terhadap enzim Glukosamina-6-fosfat sintase (GlcN-6-P)
yang merupakan unsur binaan penting bagi kebanyakan bakteria. Merujuk kepada
keputusan penyatuan molekul, T3 menunjukkan tenaga pengikatan yang
paling minima iaitu -7.09 kcal mol-1 berbanding T1 dan T2
masing-masing pada -6.49 dan -6.76 kcal mol-1, menunjukkan
nilai-nilai ini bersetuju dengan keputusan saringan antibakteria. Keputusan
kajian awal ini akan menyumbang kepada penambahbaikan struktur untuk
penghasilan ubat.
Kata kunci: terbitan tiazol, antibakteria,
resapan cakera, penyatuan molekul, GlcN-6-P sintase
References
1.
Tran, T., Nguyen, T., Do, T., Huynh, T., Tran,
C. and Thai, K. (2012). Synthesis and antibacterial activity of some
heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules,
17(6): 6684 – 6696.
2.
Kotb, E. R., Anwar, M. M., Abbas, H. S. and
El-Moez, S. I. A. (2013). A concise synthesis and antimicrobial activity of a
novel series of naphthylpyridine-3-carbonitrile compounds. Acta Poloniae
Pharmaceutica-Drug Research, 70(4): 667 – 679.
3.
Ejideke, I. P. and Ajibade, P. A. (2015).
Synthesis, characterization, antioxidant and antibacterial studies of some
metal (II) complexes of tetradentate Schiff base ligand:
(4E)-4-[(2-{(E)-[1-(2,4-dihydroxyphenyl) ethylidene]
amino}ethyl)imino]penta-2-one. Bioinorganic Chemistry and Applications,
9: 1 – 9.
4.
Dayt, D. and Serra, G. (2010). Thiazole and
oxazole alkaloids: Isolation and synthesis. Marine Drugs, 8: 2755 –
2780.
5.
Kaur, K., Kaur, R. and Dhir, G. N. (2014).
Synthesis and biological of amino acid and peptide conjugates of Rhein
derivatives. Journal of Advanced Pharmaceutical Education and Resource,
4(3): 311 – 318.
6.
Penta, S. and Vedula, R. R. (2012). A facile
one-pot synthesis of thiazole-pyrazole derivatives via multicomponent
approach. Organic Communications, 5(3): 143 – 149.
7.
Bodireddy, M. R., Mohinuddin, P. M. K.,
Gundala, T. R. and Reddy, G. (2016). Lactic acid-mediated tandem one-pot
synthesis of 2-aminothiazole derivatives: A rapid, scalable and sustainable
process. Organic Chemistry, 2: 1 – 13.
8.
Kołazcek, A., Fusiarz, I., Ławecka, J. and
Braowska, D. (2014). Biological activity and synthesis of sulfonamide
derivatives: A brief review. Chemik Er Zeitung, 68(7): 620 – 628.
9.
Kushwara, N., Kushwara, S. K. S. and Rai, A. K.
(2012). Biological activities of thiadiazole derivatives: A review. International
Research of Chemtech Research, 4(2): 517 – 531.
10.
Vijesh, A. M., Isloor, A. M., Telkar, S.,
Arulmoli, T. and Fun, H. K. (2013). Molecular docking studies of some new
imidazole derivatives for antimicrobial properties. Arabian Journal of
Chemistry, 6: 197– 204.
11.
Pawlak, D., Stolarska, M., Wojciechowski, M.
and Andruszkiewicz, R. (2015). Synthesis, anticandial activity of N3-(4-methoxyfumaroyl)
-(S)-2,3-diaminopropanoic amide derivatives–novel inhibitors of
glucosamine-6-phosphate synthase. European Journal of Medicinal Chemistry,
90: 577 – 582.
12.
Milewski, S. (2012). Glucosamine-6-phosphate
synthase –the multi-facets enzyme. Biochimica et Biophysica Acta-Protein
Structure and Molecular Enzymology, 1597(2): 173 –192.
13.
Aouad, M. R., Mayaba, M. M., Naqvi, A.,
Bardaweel, S. K., Al-blewi, F. F., Messali, M. and Rezki, N. (2017). Design,
synthesis, in silico and in vitro antimicrobial screenings of
novel 1,2,4- triazoles carrying 1,2,3-triazole scaffold with lipophilic side
chain tether. Chemistry Central Journal, 11(1): 1–13.
14.
Krishna, B. G., Sarojini, B. K. and Darshanraj,
C. G. (2010). Synthesis, characterization, molecular docking and evaluation of
antibacterial, antiproliferative and anti-inflammatory properties of new
pyridinyl substituted triazole derivatives. Der Pharma Chemica, 6(4):
345 – 361.
15.
Rajasekaran, A., Sivakumar, K. K., Sureshkumar,
K. and Manjushree, M. (2017). Design, synthesis, characterization and in-vitro
antimicrobial activity of some hybridized triazole scaffolds. Future Journal
of Pharmaceutical Sciences, 3(1): 1 – 10.
16.
Tian, G. and Haffner, C. D. (2001). Linear
relationships between binding energy of time-dependent inhibition of steroid 5α-
reductase by Ϫ1-4-azasteroids. The Journal of Biological
Chemistry, 276(24): 21359 – 21364.
17.
Koochak, H., Seyyednejad, S. M. and Motamedi,
H. (2010). Preliminary study on the antibacterial activity of some medicinal
plants of Khuzestan (Iran). Asian Pacific Journal of Tropical Medicine,
3(3): 180 – 184.
18.
Mouilleron, S., Badet-Deisot, M. A. and
Golielli-Pimpaneau, B. (2008). Ordering of C-terminal loop and glutaminase
domains of glucosamine-6-phosphate synthase promotes sugar ring opening and
formation of the ammonia channel. Journal of Molecular Biology, 377(4):
1174 – 1185.
19.
Jumal, J., Latip, J. and Yamin, B. M. (2006).
2-(4-fluoroanilino)-4,5-dimethyl-1,3-thiazole. Acta Crystallographica
Section E Structure Report Online, 62(4): 3305 – 3306.
20.
Patel, D. D., Patel, M. S., Patel, V. S. and
Patel, K. C. (2014). Synthesis and benzothiazole derivatives, their Schiff
bases and its anti-infective biological activities. International Journal of
Advanced Research, 2 (3): 1048 –1054.
21.
Rawal, R. K., Tripathi, R., Katti, S. B.,
Pannecouque, C. and Clercq, E. D. (2008). Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-nes
as anti-HIV agents. European Journal of Medicinal Chemistry, 43: 2800 –
2806.
22.
Khattab, S. N. (2005). Synthesis and biological
activity of novel amino acid-(n’-benzoyl) hydrazine and amino acid-(n’-nicotinoyl)
hydrazine derivatives. Molecules, 10: 1218 – 1228.
23.
Luzina, E. L. and Popov, A. V. (2009).
Synthesis and anticancer activity of n-bis(trifluoromethyl)alkyl-n’-thiazolyl
and n-bis(trifluoromethyl)alkyl-n’-benzothiazolyl ureas. European
Journal of Medicinal Chemistry, 44 (2009): 4944 – 4953.
24.
Upmanyu, N., Kumar, S., Shah, K. and Mishra, P.
(2012). synthesis and antimicrobial studies of some
4-(substituted)-ethanoylamino-3-mercapto-5-(4-substituted) phenyl-1, 2,
4-triazoles. Dhaka University Journal of Pharmaceutical Sciences, 11(1):
7 – 18.
25.
Anbazhagan, R. and Sankaran, K. R. (2013).
Syntheses, spectral characterization, single crystal X-ray diffraction and DFT
computational studies of novel derivatives. Journal of Molecular Structure,
1050: 73 – 80.
26.
Nalwa, H. S., Hanack, M., Pawlowski, G. and
Engel, M. K. (1999). Third-order nonlinear optical properties of porphyrazine,
phthalocyanine and naphthalocyanine germanium derivatives: demonstrating the
effect of π-conjugation length on third-order optical nonlinearity of
two-dimensional molecules. Chemical Physics, 245: 17 – 26.
27.
Qiao, L. and Hao, S. (2018). Novel
trifluoromethylcoumarinyl urea derivatives: synthesis, characterization,
fluoroscence, and bioactivity. Molecules, 23(600): 1 – 14.
28.
Saylam, A., Seferoglu, Z. and Ertan, N. (2008).
Synthesis of new hetarylazoindole dyes from some 2-aminothiazole derivatives. Russian
Journal of Organic Chemistry, 44(4): 587 – 594.
29.
Arora, P., Narang, R., Bhatia, S., Nayak, S.
K., Singh, S., K. and Narasimhan, B. (2015). Synthesis, molecular docking and
QSAR studies of 2, 4-disubsituted thiazoles as antimicrobial agents. Journal
of Applied Pharmaceutical Science, 5(2): 28 – 42.
30.
Majik, M. S., Rodrigues, C., Mascarenhas, S.
and Souza, L. D. (2014). Bioorganic chemistry design and synthesis of marine
natural product-based 1 H-indole-2, 3-dione scaffold as a new
antifouling/ antibacterial agent against fouling bacteria. Bioorganic
Chemistry, 54: 89 – 95.
31.
Shia, J. S., Al-Bayati, R. I. H., Abdula, A. M.
and Saour, K. Y. (2015). Docking study of some N-[4-(4-arylidene)-2-(4-substituted-phenyl)-5-oxo-4,
5-dihydro-imidazol-1-yl] benzenesulfonamide derivatives against
glucosamine-6-phosphate synthase. International Journal of Chemical Sciences,
13(4): 1982 – 1990.
32.
Venkatesh, T., Bodke, Y. D., Kenchappa, R. and
Telkar, S. (2016). Synthesis, antimicrobial and antioxidant activity of
chalcone derivatives containing thiobarbitone nucleus. Medicinal Chemistry,
6 (7): 440 – 448.
33.
Fikrika, H., Ambarsari, L. and Sumaryada, T.
(2009). Molecular docking studies of catechin and its derivatives as
anti-bacterial inhibitor for glucosamine-6-phosphate synthase. Earth and
Environmental Science, 31: 1 – 6.
34.
Sarojini, B. K., Krishna, B. G., Darshanraj, C.
G., Bharath, B. R. and Manjunatha, H. (2010). Synthesis, characterization, in
vitro and molecular docking studies of new 2, 5-dichloro thienyl
substituted thiazole derivatives for antimicrobial properties. European
Journal of Medicinal Chemistry, 45(8): 3490 – 3496.
35.
Venkatesh, T., Bodke, Y. D., Kenchappa, R. and
Telkar, S. (2016). Synthesis, antimicrobial and antioxidant activity of
chalcone derivatives containing thiobarbitone nucleus. Medicinal Chemistry,
6(7): 440 – 448.