Malaysian Journal
of Analytical Sciences Vol 23 No 2 (2019): 255 - 262
DOI:
10.17576/mjas-2019-2302-10
Synthesis and characterisation of nanohybrid anti-hypertensive drug,
captopril intercalated into zinc–Aluminium layered double hydroxide
(Sintesis dan Pencirian Nanohibrid Ubat Anti-Hipertensi, Captopril
Tersisip ke dalam Zink-Aluminium Hidroksida Berlapis Ganda)
Zaemah Jubri1*,
Siti Halimah Sarijo2, Monica Limau Anak Jadam1
1Centre for Advanced Materials,
Universiti
Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
2Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: zaemah@uniten.edu.my
Received: 19
August 2018; Accepted: 10 March 2019
Abstract
Captopril
(CPL), an anti-hypertensive drug was intercalated into the interlayer spaces of
zinc–aluminium layered double hydroxide (ZLDH) for the formation of zinc–aluminium–captopril
(ZCPL) hybrid nanocomposite material by self-assembly method. The concentration
of CPL used was 0.08 M with pH 7.5 in a constant 3:1 molar ratio of zinc (Zn)
to aluminium (Al) in the mother liquor. As a result of the successful intercalation
of CPL, powder X-ray diffraction pattern (PXRD) shows the basal spacing
increased from 8.90 Å in ZLDH to 9.69 Å in the ZCPL nanohybrid material. Fourier
transform infrared (FTIR) spectroscopy study shows the intercalated compound of
ZCPL resembled the spectra of ZLDH and CPL, thus indicating the presence of
both functional groups in ZCPL spectra. CHNS analysis shows the ZCPL nanohybrid
material contains 30.63% (w/w) of CPL which was calculated based on the
percentage of carbon in the sample. It was also found that the BET surface area
increased from 1.7 m2/g in ZLDH to 10.9 m2/g in ZCPL. The
pore texture of the resulting material was also changed as the result of the
intercalation and the expansion of the basal spacing during the formation of
the layered intercalated ZCPL nanohybrid material.
Keywords:
captopril, anti-hypertensive drug, intercalation, layered double
hydroxide, nanocomposite
Abstrak
Captopril
(CPL) iaitu ubat anti-hipertensi telah berjaya disisipkan ke dalam ruang antara
lapis hidroksida berlapis ganda bagi pembentukan bahan hibrid ZCPL nanokomposit
melalui kaedah pembentukan sendiri. Kepekatan CPL yang digunakan adalah 0.08M
dan pH 7.5 dengan nisbah kepekatan tetap Zn : Al adalah 3 : 1 dalam larutan
akueous. Penyisipan anion captopril dapat ditentukan dari pengembangan jarak
basal PXRD daripada 8.90 Å bagi zink-aluminium hidroksida berlapis ganda (ZLDH)
kepada 9.69Å bagi bahan nanohibrid ZCPL. Analisis inframerah transformasi
Fourier (FTIR) menunjukkan kehadiran gabungan kumpulan berfungsi bagi ZLDH dan
CPL kelihatan pada spektra ZCPL. Ini membuktikan CPL telah berjaya disisipkan
di antara ruang hidroksida berlapis ganda bagi pembentukan bahan nanokomposit
tersebut. Analisis CHNS menunjukkan bahan nanohibrid ZCPL mengandungi CPL
dengan peratusan 30.63 % (w/w) yang ditentukan melalui pengiraan peratusan
karbon di dalam sampel nanohibrid ZCPL. Luas permukaan BET telah meningkat
daripada 1.7 m2/g kepada 10.9 m2/g masing-masing bagi
ZLDH dan ZCPL. Struktur liang bahan nanohibrid yang terhasil juga telah berubah
disebabkan penyisipan captopril telah mengembangkan jarak basal, begitu juga
dengan pembentukan liang yang lebih besar berlaku hasil dari pembentukan bahan
nanohibrid, ZCPL.
Kata kunci: captopril,
ubat anti-hipertensi, sisipan, hidroksida berlapis ganda, nanokomposit
References
1.
Ladewig,
K., Marcus, M., Zhi, P. X., Gray, P. P. and Gao, Q. (2010). Controlled
preparation of layered double hydroxide nanoparticle and their application as
gene delivery vehicles. Applied Clay
Science, 48(12): 280 – 289.
2.
Suman,
S., Sayantan, R., Rituparna, A., Tapan, K. C. and Jui, C. (2017). Magnesium,
zinc and calcium aluminium layered double hydroxide drug nanohybrids: A
comprehensive study. Applied Clay Science,
135: 493 – 509.
3.
Kuthati,
Y., Kankala, R. K. and Lee, C. H. (2015). Layered double hydroxide
nanoparticles or biomedical applications: Current status and recent prospects. Applied Clay Science, 112-113:100 – 116.
4.
Duan,
X. and Evans, D. G. (2006). Layered double hydroxides, structure and bonding. Springer,
Berlin, pp. 1 – 234.
5.
Sudipte,
S., Ravi, T., Shiv, P., Shivali, D., Durga, P. M., Parimal, D., Shripathi, T.,
Mohan, K., Dipak, R. and Pralay, M. (2016). Layered double hydroxide as
effective carrier for anticancer drug and tailoring of release rate through
interlayer anions. Journal of Controlled
Release, 224: 186 – 198.
6.
Salak,
A. N., Tedim, J., Alena, I. Kuznetsova, Mikhail, L. Maria, G. S. F. (2010).
Anion exchange in Zn-Al layered double hydroxide: In-situ X-ray diffraction
study. Chemical Physics Letters, 495:
73 – 76.
7.
Chakrabarty,
A. and Acharya, H. (2018). Facile synthesis of MgAl-layered double hydroxide
supported metal organic framework nanocomposite for adsorptive removal of
methyl orange dye. Colloid and Interface
Science Communications, 24: 35 – 39.
8.
Lupa,
L., Cocheci, L., Pode, R. and Hulka, L. (2018). Phenol adsorption using aliquat
336 functionalized Zn-Al layered double hydroxide. Separation and Purification Technology, 196: 82 – 95.
9.
Rives,
V., Arco, M. D. and Martin, C. (2013). Layered double hydroxides as drug
carriers and for controlled release of non-steroidal anti-inflammatory drugs
(NSAIDs): A review. Journal of Controlled
Release, 169: 28 – 39
10.
Zhang,
K., Xu, Z. P., Lu, J., Tang, Z. Y., Zhao, H. J., Good, D. A. and Wei, M. Q.
(2014). Potential for layered double hydroxides-based innovative drug delivery
systems. International Journal of Molecular
Sciences, 15: 7409 – 7428.
11.
Sipos,
P. and Palinko, I. (2018). As-prepared and intercalated layered double
hydroxides of the hydrocalumite type as efficient catalysts in various
reactions. Catalysis Today, 306: 32 –
41.
12.
Zhang,
S., Yan, Y., Wang, W., Gu, X., Li, H., Li, J. and Sun, J. (2018). Intercalation
of phosphotungstic acid into layered double hydroxide by reconstruction method
and its application in intumescent flame-retardant poly(lactic acid)
composites. Polymer Degradation and
Stability, 147:142-150.
13.
Sorrentino,
A., Gorassi, M., Tortora, M., Vittoria, V., Constantino, U., Marmottini, F.,
Padella, F. (2005). Incorporation of Mg-Al hydrotalcite into a biodegradable
poly(Ɛ-caprolactone) by high energy ball miling. Polymer 45: 1601 – 1608
14.
Dutta,
K., Das, S. and Pramanik, A. (2012). Concomitant synthesis of highly
crystalline Zn-Al layered double hydroxide and ZnO: Phase interconversion and
enhanced photocatalytic activity. Journal
of Colloid and Interface Science, 366: 28 – 36.
15.
Xiao,
Y., Su, D., Wang, X., Wu, S., Zhou, L., Sun, Z., Wang, Z., Fang, S. and Li, F.
(2017). Ultrahigh energy density and stable supercapacitor with 2D NiCoAl
Layered double hydroxide. Electrochimica
Acta, 253: 324 – 332.
16.
Shao,
M., Zhang, R., Li, Z., Wei, M. Evans, D. E. and Duan, X. (2015). Layered double
hydroxide toward electrochemical energy storage and conversion: Design,
synthesis and applications. Chemical
Communication, 51: 15880 – 15893.
17.
Gasser,
M. S. (2009). Inorganic layered double hydroxides as ascorbic acid (vitamin C)
delivery system –intercalation and their controlled release properties. Colloids Surface B, 73: 103 – 109
18.
Li,
Y., Bao, W., Wu, H., Wang, J., Zhang, Y., Wan, Y., Cao, D. and Wang, Q. (2017).
Delaminated layered double hydroxide delivers DNA molecules as sandwich
nanostructure into cells via a
non-endocytic pathway. Science Bulletin,
62(10): 686 – 692.
19.
Rojas,
R., Linck, Y. G., Cuffini, S., Monti, G. and Giacomelli, C. E. (2015). Structural
and physicochemical aspects of drugs release from layered double hydroxides and
layered hydroxide salts. Applied Clay
Science, 109-110: 119 – 126.
20.
Rives,
V., Arco, M. and Martin, C. (2014). Intercalation of drugs in layered double
hydroxides and their controlled release: A review. Applied Clay Science, 88-89: 239 – 269.
21.
Mohsin,
S. M. N., Hussein, M. Z., Sarijo, S. H., Fakurazi, S., Arulselvan, P. and Yun
Hin, T. Y. (2013). Synthesis of (cinnnamate-zinc layered hydroxide)
intercalation compound for sunscreen application. Chemistry Central Journal, 26(7): 1 – 12.
22.
Legrouri
A., Badreddine, A., Barroug, A., Roy, J. P., Besse, P. (1999). Influence of pH
on the synthesis of Zn-Al-nitrate layered double hydroxide and the exchange of
nitrate by phosphate ions. Journal of
Material Science Letters, 18: 1077 – 1079.
23.
Hussein,
M., Zainal, Z. and Hwa, T. K. (2000). Synthesis and properties of layered organic-inorganic
hybrid material: Zn-Al layered double hydroxide-dioctyl sulfosuccinate nanocomposite.
Journal of Nanoparticle Research, 2:
293 – 298.
24.
Srivastava,
A., Khare, B., Argal, R. and Patel, S. (2003). Microdetermination of
anti-hypertensive drug captopril using 2,6-dichlorophenol indophenol. Indian Journal of Chemistry, 42: 3036 – 3040.
25.
Jubri,
Z., Mohd Yusuf, N. Z. A., Sarijo, S. H., Marsom, E. S. and Hussein, M. Z.
(2017). Synthesis, characterization and controlled release properties of
zinc-aluminium-beta-naphtoxyacetate nanocomposite. Journal of Porous Materials, 24(3): 573 – 582.
26.
Xu,
Z. P. and Braterman, P. S. (2010). Synthesis, structure and morphology of
organic layered double hydroxide (LDH) hybrids: Comparison between aliphatic
anions and their oxygenated analogs. Applied
Clay Science, 48: 235 – 242.