Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 212 - 218

DOI: 10.17576/mjas-2019-2302-05

 

 

 

ELECTROSPUN POLY (VINYL ALCOHOL) NANOFIBERS DOPED WITH MESOPOROUS SILICA NANOPARTICLES FOR CONTROLLED RELEASE OF HYDROPHILIC MODEL DRUG

 

(Elektrospun Poli(Vinil Alkohol) Nanofiber Didopkan Dengan Silika Nanopartikel Berliang Meso untuk Perlepasan Terkawal Model Dadah Hidrofilik)

 

Nur Izzah Md Fadilah1, Haslina Ahmad1,2*, Mohd Firdaus Abd Rahman3, Norizah Abdul Rahman2

 

1Integrated Chemical Biophysics Research

2Department of Chemistry, Faculty of Science

3Institute of Advanced Technology

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  haslina_ahmad@upm.edu.my

 

 

Received: 19 August 2018; Accepted: 10 March 2019

 

 

Abstract

Nanofiber materials have often been reported as transporters for clinical drugs but face the limitation of burst releasing the drugs. Therefore, mesoporous silica nanoparticles (MSNs) have raised much interest to be used in drug delivery system because of their large pore volume and high surface area. In this study, nanofiber drug delivery system based on poly(vinyl alcohol) (PVA) loaded with novel ionic liquid templated MSNs were successfully prepared by the electrospinning method. The composite fiber mat was designed for the prolonged and sustained release of drug. MSNs were synthesized by co-condensation method with average particles size of ~70 nm and then loaded with hydrophilic model drug methylene blue (MB). The effect incorporation of MB-loaded MSNs into the polymer solution to form fibrous structure was investigated. Uniform PVA/MB nanofiber mat was also produced as controls. The morphologies of nanoparticles and composite nanofiber were characterized by field emission scanning electron microscope (FESEM). After electrospinning, electron microscope revealed that MSNs were randomly distributed in the regions of nanofiber. Drug release profiles of MB from MSNs and electrospun mats were evaluated. The results indicated that adsorption of model drug MB into MSNs and incorporation them into nanofiber are effective way of minimizing burst release of drug. Sustained delivery was achieved with controllable release during the 120h releasing period

 

Keywords:  poly(vinyl alcohol), mesoporous silica nanoparticles, nanofiber, electrospinning, drug delivery

 

Abstrak

Bahan nanofiber sering dilaporkan sebagai penghantar untuk ubat-ubat klinikal tetapi ia menghadapi limit batasan dalam melepaskan ubat secara pecah. Oleh itu, silika nanopartikel berliang-meso (SMN) telah menimbulkan tarikan untuk digunakan dalam sistem penghantaran ubat-ubat kerana memiliki isipadu liang yang besar dan kawasan permukaan yang tinggi. Dalam kajian ini, sistem penghantaran ubat iaitu nanofiber yang berdasarkan poli(vinil alkohol) (PVA) dimuatkan bersama SMN cecair ionik baru telah berjaya disediakan melalui kaedah putaran elektro. Komposit tikar fiber telah direka untuk pembebasan ubat yang berpanjangan dan berterusan. SMN telah disintesis oleh kaedah pemeluwapan bersama dengan purata saiz partikel ~70 nm dan kemudian, dimuatkan dengan model hidrofilik ubat iaitu metilina biru (MB). Kesan penggabungan BM-SMN ke dalam polimer untuk membentuk struktur fiber telah dikaji. Nanofiber PVA/BM yang seragam juga dihasilkan sebagai kawalan. Morfologi nanopartikel dan komposit nanofiber telah dicirikan oleh mikroskop elektron pengimbasan pelepasan medan (MMEPP). Selepas putaran elektro, mikroskop elektron mendedahkan bahawa SMN berada secara rawak di dalam nanofiber. Profil pembebasan ubat BM dari SMN dan tikar putaran elektro telah dinilai. Keputusan menunjukkan bahawa penyerapan model ubat BM ke dalam SMN dan seterusnya memasukkannya ke nanofiber adalah cara yang berkesan untuk meminimumkan pembebasan ubat secara pecah. Penghantaran yang berterusan telah dicapai dengan pembebasan yang dapat dikawal dalam tempoh 120 jam.  

 

Kata kunci:  poli(vinil alkohol), silika nanopartikel berliang-meso, nanofiber, elektrospining, penghantaran ubat

 

References

1.       Aliabadi, H. M. and Lavasanifar, A. (2006). Polymeric micelles for drug delivery. Expert opinion on drug delivery, 3(1): 139 – 162.

2.       Thipparaboina, R., Chavan, R. B., Kumar, D., Modugula, S. and Shastri, N. R. (2015). Micellar carriers for the delivery of multiple therapeutic agents. Colloids and Surfaces B: Biointerfaces, 135(1): 291 –308.

3.       Vahed, S. Z., Salehi, R., Davaran, S. and Sharifi, S. (2017). Liposome-based drug co-delivery systems in cancer cells. Materials Science and Engineering: C, 71(1): 1327 – 1341.

4.       Goyal, R., Macri, L. K., Kaplan, H. M. and Kohn, J. (2016). Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 240(1): 77 – 92.

5.       Khalf, A. and Madihally, S. V. (2017). Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 112(1): 1 – 17.

6.       Jalvandi, J., White, M., Truong, Y. B., Gao, Y., Padhye, R. and Kyratzis, I. L. (2015). Release and antimicrobial activity of levofloxacin from composite mats of poly (ɛ-caprolactone) and mesoporous silica nanoparticles fabricated by core–shell electrospinning. Journal of Materials Science, 50(24): 7967 – 7974.

7.       Song, B., Wu, C. and Chang, J. (2012). Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly (lacticcoglycolic acid)/mesoporous silica nanoparticles composite mats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(8): 2178 – 2186.

8.       Mehrasa, M., Asadollahi, M. A., Nasri-Nasrabadi, B., Ghaedi, K., Salehi, H., Dolatshahi-Pirouz, A. and Arpanaei, A. (2016). Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties. Materials Science and Engineering: C, 66(1): 25 – 32.

9.       Vashisth, P. and Pruthi, V. (2016). Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Materials Science and Engineering: C, 67(1): 304 – 312.

10.    Park, C. G., Kim, E., Park, M., Park, J. H. and Choy, Y. B. (2011). A nanofibrous sheet-based system for linear delivery of nifedipine. Journal of Controlled Release, 149(3): 250 – 257.

11.    Liverani, L., Lacina, J., Roether, J. A., Boccardi, E., Killian, M. S., Schmuki, P., Schubert, D. W. and Boccaccini, A. R. (2017). Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioactive Materials, 3(1): 55 – 63.

12.    Song, B., Wu, C. and Chang, J. (2012). Dual drug release from electrospun poly (lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterialia, 8(5): 1901 – 1907.

 




Previous                    Content                    Next