Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 219 - 228
DOI:
10.17576/mjas-2019-2302-06
REMOVAL
OF Pb(II) FROM AQUEOUS SOLUTION BY PINEAPPLE PLANT STEM
(Penyingkiran
Pb(II) dari Larutan Akueus Menggunakan Batang Tumbuhan Nanas)
Vivian Loh Zing
Ting, Tan Yen Ping*, Abdul Halim Abdullah
Department
of Chemistry, Faculty of Science,
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding
author: typ@upm.edu.my
Received: 19
August 2018; Accepted: 25 February 2019
Abstract
The excessive release of lead (Pb) ions
into water stream and large production of agricultural wastes cause water and
land pollution. Adsorption is useful in eliminating Pb(II) from water
environment. The potential use of agricultural waste, pineapple plant stem as
adsorbent to reduce the amount of Pb(II) in aqueous solutions was investigated.
The material was modified with oxalic acid (OA) to improve the adsorption
efficiency of Pb(II). Adsorption isotherms and kinetics were determined for the
adsorption of Pb(II) on natural pineapple plant stem (NPPS) and OA modified
pineapple plant stem (OAPPS) from aqueous solution in batch studies. The
adsorption capacity of Pb(II) on pineapple plant stem depends considerably on
the solution pH, in which the amount of Pb(II) adsorbed increased with
increasing solution pH, reached its maximal with 14.25 mg/g at pH 5 and 30.47
mg/g at pH 4 for NPPS and OAPPS, respectively. The adsorption performance of
the adsorbents was also studied at different initial Pb(II) concentrations (50
– 150 mg/L), it was observed to be less affected at higher initial Pb(II)
concentration. The adsorption isotherm was then investigated and the
equilibrium data were well fitted with the Langmuir isotherm model with 13.30
and 27.70 mg/g as the calculated maximum capacities for NPPS and OAPPS,
respectively. The adsorption of Pb(II) onto NPPS and OAPPS reached equilibrium
after 60 minutes at all concentrations studied. The kinetics data were found to
follow the pseudo-second order model.
Keywords: adsorption, lead, oxalic acid, pineapple plant
stem
Abstrak
Pelepasan
ion-ion plumbum (Pb) yang berlebihan ke dalam aliran air dan pengeluaran sisa
pertanian yang banyak menyebabkan pencemaran air dan tanah. Penjerapan amat
berguna untuk menyingkirkan Pb(II) dari air. Penyelidikan atas penggunaan sisa
pertanian, iaitu batang nanas sebagai penjerap untuk mengurangkan Pb(II) dalam
larutan akueus telah dijalankan. Tambahan pula, batang nanas telah dimodifikasi
dengan asid oksalik untuk meningkatkan kecekapan penjerapan Pb(II). Penjerapan
isotherma dan kinetik Pb(II) atas tumbuhan nanas semulajadi (NPPS) dan yang dimodifikasi
(OAPPS) daripada larutan akueus dijelaskan melalui kajian kumpulan. Kapasiti
penjerapan Pb(II) pada batang tumbuhan nanas sangat bergantung kepada pH, di
mana kapasiti penjerapan meningkat dengan peningkatan larutan pH dari 1 hingga
4, mencapai maksimal dengan 14.25 mg/g pada pH 5 untuk NPPS dan 30.47 mg/g pada
pH 4 untuk OAPPS. Prestasi jerapan batang nanas juga diuji dengan pelbagai
kepekatan ion logam (50 – 150 mg/L), dan diperhatikan memberi kesan yang rendah
dengan kepekatan yang lebih tinggi. Data keseimbangan penjerapan didapati
bersesuaian dengan model isoterma Langmuir dengan 13.30 mg/g untuk NPPS dan
27.70 mg/g untuk OAPPS sebgai kapasiti maksima yang dikira oleh model.
Penjerapan Pb(II) ke NPPS dan OAPPS mencapai keseimbangan selepas 60 minit pada
semua kepekatan yang dikaji. Data kinetik didapati mengikuti model kinetik
tertib pseudo-kedua.
Kata kunci: penjerapan, plumbum, asid oksalik, batang tumbuhan nanas
References
1.
United States Environmental Protection Agency
(2017). Lead regulations. https://www.epa.gov/lead/lead-regulations#water
[Access online 14 September 2017].
2.
Salman,
M., Athar, M. and Farooq, U. (2015). Biosorption of heavy metals from aqueous
solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and
Bio/Technology, 14(2): 211 – 228.
3.
Lopes,
A. C. B. A., Peixe, T. S., Mesas, A. E. and Paoliello, M. M. (2016). Lead
exposure and oxidative stress: a systematic review. Reviews of Environmental
Contamination and Toxicology, 236: 193 – 238.
4.
World
Health Organization (2017). Lead. http://www.who.int/ipcs/assessment/public_health/lead/en/
[Access online 14 September 2017].
5.
An,
F. Q., Wu, R. Y., Li, M., Hu, T. P., Gao, J. F. and Yuan, Z. G. (2017). Adsorption of heavy metal ions by
iminodiacetic acid functionalized D301 resin: Kinetics, isotherms and thermodynamics.
Reactive and Functional Polymers,
118: 42 – 50.
6.
Peng,
W., Han, G., Cao, Y., Sun, K. and Song, S. (2018). Efficiently removing Pb(II)
from wastewater by graphene oxide using foam flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
556: 266 – 272.
7.
Kalboussi,
N., Rapaport, A., Bayen, T., Amar, N. B. and Ellouze, F. (2017). Optimal
control of a membrane filtration system. IFAC Word Congress 2017, Jul 2017,
Toulouse, France. Elsevier, 50(1): 8704 – 8709.
8.
Un,
U. T. and Ocal, S. E. (2015). Removal of heavy metals (Cd, Cu, Ni) by
electrocoagulation. International Journal
of Environmental Science and Development, 6(6): 425 – 429.
9.
Mopoung,
R. and Kengkhetkit, N. (2016). Lead and cadmium removal efficiency from aqueous
solution by NaOH treated pineapple waste. International
Journal of Applied Chemistry, 12(1): 23 – 35.
10.
Ince,
M. and Ince, O. K. (2017). An overview of adsorption technique for heavy metal
removal from water/wastewater: A critical review. International Journal of Pure and Applied Sciences, 3(2): 10 – 19.
11.
Guo,
L., Liang, L.Y., Wang, Y. J. and Liu, M. D. (2015). Biosorption of Pb2+
from aqueous solution by rice straw modified with citric acid. Environmental Progress & Sustainable
Energy, 35(2): 359 – 367.
12.
El-Deen,
G. E. S. and El-Deen, S. E. A. S. (2016). Kinetic and isotherm studies for
adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon.
Desalination and Water Treatment,
57(59): 28910 – 28931.
13.
Lee,
M. E., Park, J. H. and Chung, J. W. (2019). Comparison of the lead and copper
adsorption capacities of plant source materials and their biochars. Journal of Environmental Management,
236: 118 – 124.
14.
Alhogbi,
B. G. (2017). Potential of coffee husk biomass waste for the adsorption of
Pb(II) ion from aqueous solutions. Sustainable
Chemistry and Pharmacy, 6: 21 – 25.
15.
Jena,
S. and Sahoo, R. K. (2017). Removal of Pb(II) from aqueous solution using
fruits peel as a low cost adsorbent. International
Journal of Science, Engineering and Technology, 5(1): 5 – 13.
16.
Chan,
S. L., Tan, Y. P., Abdullah, A. H. and Ong, S. T. (2016). Equilibrium, kinetic
and thermodynamic studies of a new potential biosorbent for the removal of
Basic Blue 3 and Congo Red dyes: Pineapple (Ananas
comosus) plant stem. Journal of the
Taiwan Institute of Chemical Engineers, 61: 306 – 315.
17.
Marshall,
W. E., Wartelle, L. H., Boler, D. E., Johns, M. M. and Toles, C. A. (1999).
Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69: 263 – 368.
18.
Nameni,
M., Alavi, M. M. and Arami, M. (2008). Adsorption of hexavalent chromium from
aqueous solutions by wheat bran. International
Journal of Environmental Science & Technology, 5(2): 161 –168.
19.
Giraldo,
L. and Moreno-Pirajan, J. C. (2008). Pb2+ adsorption from aqueous solutions
on activated carbons obtained from lignocellulosic residues. Brazil Journal of Chemical Engineering,
25: 143 – 151.
20.
Kariuki,
Z., Kiptoo, J. and Onyancha, D. (2017). Biosorption studies of lead and copper
using rogers mushroom biomass ‘Lepiota
hystrix’. South African Journal of
Chemical Engineering, 23: 62 – 70.
21.
Elhafez,
S. E. A., Hamad, H. A., Zaatout, A. A. and Malash, G. F. (2017). Management of
agricultural waste for removal of heavy metals from aqueous solutions:
adsorption behaviors, adsorption mechanisms, environmental protection, and
techno-economic analysis. Environmental
Science and Pollution Research, 24(2): 1397 – 1415.
22.
Rafatullah,
M. O., Sulaiman, R., Hashim and Ahmad, A. (2009). Adsorption of copper(II),
chromium(III), nickel(II) and lead(II) ions from aqueous solutions by meranti
sawdust. Journal of Hazardous Materials,
170: 969 – 977.
23.
Langmuir,
I. (1915). The constitution and fundamental properties of solids and liquids. Part I. Solids, American Chemical Society,
38: 2221 – 2295.
24.
Freundlich,
H. M. F. (1906). Uber die adsorption in lusungen. Journal of Physic Chemistry, 57: 385 –470.
25.
Iqbal,
M., Saeed, A. and Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and
adsorption isotherms modelling, ion exchange, and EDX analysis for
understanding the mechanism of Cd2+ and Pb2+ removal by
mango peel waste. Journal of Hazardous
Materials, 164: 161 – 171.