Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 219 - 228

DOI: 10.17576/mjas-2019-2302-06

 

 

 

REMOVAL OF Pb(II) FROM AQUEOUS SOLUTION BY PINEAPPLE PLANT STEM

 

(Penyingkiran Pb(II) dari Larutan Akueus Menggunakan Batang Tumbuhan Nanas)

 

Vivian Loh Zing Ting, Tan Yen Ping*, Abdul Halim Abdullah

 

Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  typ@upm.edu.my

 

 

Received: 19 August 2018; Accepted: 25 February 2019

 

 

Abstract

The excessive release of lead (Pb) ions into water stream and large production of agricultural wastes cause water and land pollution. Adsorption is useful in eliminating Pb(II) from water environment. The potential use of agricultural waste, pineapple plant stem as adsorbent to reduce the amount of Pb(II) in aqueous solutions was investigated. The material was modified with oxalic acid (OA) to improve the adsorption efficiency of Pb(II). Adsorption isotherms and kinetics were determined for the adsorption of Pb(II) on natural pineapple plant stem (NPPS) and OA modified pineapple plant stem (OAPPS) from aqueous solution in batch studies. The adsorption capacity of Pb(II) on pineapple plant stem depends considerably on the solution pH, in which the amount of Pb(II) adsorbed increased with increasing solution pH, reached its maximal with 14.25 mg/g at pH 5 and 30.47 mg/g at pH 4 for NPPS and OAPPS, respectively. The adsorption performance of the adsorbents was also studied at different initial Pb(II) concentrations (50 – 150 mg/L), it was observed to be less affected at higher initial Pb(II) concentration. The adsorption isotherm was then investigated and the equilibrium data were well fitted with the Langmuir isotherm model with 13.30 and 27.70 mg/g as the calculated maximum capacities for NPPS and OAPPS, respectively. The adsorption of Pb(II) onto NPPS and OAPPS reached equilibrium after 60 minutes at all concentrations studied. The kinetics data were found to follow the pseudo-second order model.

 

Keywords:  adsorption, lead, oxalic acid, pineapple plant stem

 

Abstrak

Pelepasan ion-ion plumbum (Pb) yang berlebihan ke dalam aliran air dan pengeluaran sisa pertanian yang banyak menyebabkan pencemaran air dan tanah. Penjerapan amat berguna untuk menyingkirkan Pb(II) dari air. Penyelidikan atas penggunaan sisa pertanian, iaitu batang nanas sebagai penjerap untuk mengurangkan Pb(II) dalam larutan akueus telah dijalankan. Tambahan pula, batang nanas telah dimodifikasi dengan asid oksalik untuk meningkatkan kecekapan penjerapan Pb(II). Penjerapan isotherma dan kinetik Pb(II) atas tumbuhan nanas semulajadi (NPPS) dan yang dimodifikasi (OAPPS) daripada larutan akueus dijelaskan melalui kajian kumpulan. Kapasiti penjerapan Pb(II) pada batang tumbuhan nanas sangat bergantung kepada pH, di mana kapasiti penjerapan meningkat dengan peningkatan larutan pH dari 1 hingga 4, mencapai maksimal dengan 14.25 mg/g pada pH 5 untuk NPPS dan 30.47 mg/g pada pH 4 untuk OAPPS. Prestasi jerapan batang nanas juga diuji dengan pelbagai kepekatan ion logam (50 – 150 mg/L), dan diperhatikan memberi kesan yang rendah dengan kepekatan yang lebih tinggi. Data keseimbangan penjerapan didapati bersesuaian dengan model isoterma Langmuir dengan 13.30 mg/g untuk NPPS dan 27.70 mg/g untuk OAPPS sebgai kapasiti maksima yang dikira oleh model. Penjerapan Pb(II) ke NPPS dan OAPPS mencapai keseimbangan selepas 60 minit pada semua kepekatan yang dikaji. Data kinetik didapati mengikuti model kinetik tertib pseudo-kedua.

 

Kata kunci:  penjerapan, plumbum, asid oksalik, batang tumbuhan nanas

 

References

1.          United States Environmental Protection Agency (2017). Lead regulations. https://www.epa.gov/lead/lead-regulations#water [Access online 14 September 2017].

2.          Salman, M., Athar, M. and Farooq, U. (2015). Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Reviews in Environmental Science and Bio/Technology, 14(2): 211 – 228.

3.          Lopes, A. C. B. A., Peixe, T. S., Mesas, A. E. and Paoliello, M. M. (2016). Lead exposure and oxidative stress: a systematic review. Reviews of Environmental Contamination and Toxicology, 236: 193 – 238.

4.          World Health Organization (2017). Lead. http://www.who.int/ipcs/assessment/public_health/lead/en/ [Access online 14 September 2017].

5.          An, F. Q., Wu, R. Y., Li, M., Hu, T. P., Gao, J. F. and Yuan, Z. G. (2017).  Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: Kinetics, isotherms and thermodynamics. Reactive and Functional Polymers, 118: 42 – 50.

6.          Peng, W., Han, G., Cao, Y., Sun, K. and Song, S. (2018). Efficiently removing Pb(II) from wastewater by graphene oxide using foam flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 556: 266 – 272.

7.          Kalboussi, N., Rapaport, A., Bayen, T., Amar, N. B. and Ellouze, F. (2017). Optimal control of a membrane filtration system. IFAC Word Congress 2017, Jul 2017, Toulouse, France. Elsevier, 50(1): 8704 – 8709.

8.          Un, U. T. and Ocal, S. E. (2015). Removal of heavy metals (Cd, Cu, Ni) by electrocoagulation. International Journal of Environmental Science and Development, 6(6): 425 – 429.

9.          Mopoung, R. and Kengkhetkit, N. (2016). Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. International Journal of Applied Chemistry, 12(1): 23 – 35.

10.        Ince, M. and Ince, O. K. (2017). An overview of adsorption technique for heavy metal removal from water/wastewater: A critical review. International Journal of Pure and Applied Sciences, 3(2): 10 – 19.

11.        Guo, L., Liang, L.Y., Wang, Y. J. and Liu, M. D. (2015). Biosorption of Pb2+ from aqueous solution by rice straw modified with citric acid. Environmental Progress & Sustainable Energy, 35(2): 359 – 367.

12.        El-Deen, G. E. S. and El-Deen, S. E. A. S. (2016). Kinetic and isotherm studies for adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon. Desalination and Water Treatment, 57(59): 28910 – 28931.

13.        Lee, M. E., Park, J. H. and Chung, J. W. (2019). Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. Journal of Environmental Management, 236: 118 – 124.

14.        Alhogbi, B. G. (2017). Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6: 21 – 25.

15.        Jena, S. and Sahoo, R. K. (2017). Removal of Pb(II) from aqueous solution using fruits peel as a low cost adsorbent. International Journal of Science, Engineering and Technology, 5(1): 5 – 13.

16.        Chan, S. L., Tan, Y. P., Abdullah, A. H. and Ong, S. T. (2016). Equilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pineapple (Ananas comosus) plant stem. Journal of the Taiwan Institute of Chemical Engineers, 61: 306 – 315.

17.        Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M. and Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69: 263 – 368.

18.        Nameni, M., Alavi, M. M. and Arami, M. (2008). Adsorption of hexavalent chromium from aqueous solutions by wheat bran. International Journal of Environmental Science & Technology, 5(2): 161 –168.

19.        Giraldo, L. and Moreno-Pirajan, J. C. (2008). Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues. Brazil Journal of Chemical Engineering, 25: 143 – 151.

20.        Kariuki, Z., Kiptoo, J. and Onyancha, D. (2017). Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’. South African Journal of Chemical Engineering, 23: 62 – 70.

21.        Elhafez, S. E. A., Hamad, H. A., Zaatout, A. A. and Malash, G. F. (2017). Management of agricultural waste for removal of heavy metals from aqueous solutions: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environmental Science and Pollution Research, 24(2): 1397 – 1415.

22.        Rafatullah, M. O., Sulaiman, R., Hashim and Ahmad, A. (2009). Adsorption of copper(II), chromium(III), nickel(II) and lead(II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170: 969 – 977.

23.        Langmuir, I. (1915). The constitution and fundamental properties of solids and liquids. Part I. Solids, American Chemical Society, 38: 2221 – 2295.

24.        Freundlich, H. M. F. (1906). Uber die adsorption in lusungen. Journal of Physic Chemistry, 57: 385 –470.

25.        Iqbal, M., Saeed, A. and Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modelling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164: 161 – 171.

 




Previous                    Content                    Next