Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 197 - 203

DOI: 10.17576/mjas-2019-2302-03

 

 

 

ELECTROCHEMICAL PROPERTIES OF MESOPOROUS SILICA (SBA-15)-CARBON ELECTRODE

 

(Ciri Electrokimia Karbon Silica Berliang Meso)

 

Noramira Saad, Mohammad Noor Jalil*, Zainiharyati Mohd Zain, Hamizah Mohd Zaki


Faculty of Applied Science,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  moham423@salam.uitm.edu.my

 

 

Received: 19 August 2018; Accepted: 14 March 2019

 

 

Abstract

Mesoporous silica is material that possesses the pore sizes between 2 nm to 50 nm which had expanded their applications rapidly. In this study, mesostructured SBA-15 was synthesized and characterized then the electrochemical behaviour being analysed to determine the current signal and the impedance of mesoporous silica carbon electrode. The material with pore sizes 5.5 nm was successfully synthesized by surfactant templating technique, using triblock copolymer pluronic (P123) as directing agent and tetraethyl orthosilicate (TEOS) as silica sources. The synthesized SBA-15 was characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), nitrogen adsorption-desorption and infra-red (IR). Two different electrodes were fabricated which carbon paste electrode (CPE) and hybrid SBA-15 with carbon paste electrode (SBA-15/MCPE) and analysed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The SBA-15/MCPE results better adsorption and enhanced the response signal to 30% and lower resistance compared to CPE with 179Ω and 187Ω respectively due to addition of meso-sites which improved the electron pathway This study demonstrates that mesoporous silica (SBA-15) can be considered as promising material in development of high performance, lightweight and flexible devices in electrochemistry.

 

Keywords:  mesoporous silica, SBA-15, electrochemical properties, mesoporous silica-carbon electrode

 

Abstrak

Bahan berliang meso ialah bahan yang mempunyai saiz liang antara 2 nm hingga 50 nm yang telah dikembangkan aplikasinya secara meluas. Dalam kajian ini, SBA-15 berliang meso telah disintesis dan dicirikan. Setelah itu, sifat elektrokimianya di analisis. Bahan dengan liang bersaiz 5.5 nm berjaya disintesis melalui teknik templat surfaktan menggunakan triblok ko-polimer pluronic (P123) sebagai agen pengarah dan tetraetil ortosilikat (TEOS) sebagai sumber silica. Bahan yang disintesis dicirikan menggunakan teknik pembelauan sinar-X, mikroskopi imbasan elektron, penyerapan penjerapan nitrogen dan infra merah. Dua elektrod berbeza telah difabrikasikan, iaitu elektrod pes carbon (CPE) dan elektrod yang dimodifikasi (SBA-15/MCPE). Kedua-dua elektrod yang difabrikasi di analisa dengan menggunakan alat voltametri berkitar dan spektroskopi impedans elektrokimia. SBA-15/MCPE menawarkan penjerapan yang baik dan meningkatkan signal respon sehingga 30% dan menghasilkan rintangan yang lebih rendah berbanding CPE iaitu masing-masing 179Ω dan 187Ω. Kajian ini menunjukkan bahawa SBA-15 boleh dianggap sebagai bahan yang berpotensi dalam menghasilkan alat yang berprestaai tinggi, ringan dan flexibel dalam electrokimia.

 

Kata kunci:  silica berliang meso, SBA-15, pencirian elektrokimia, elektrod karbon-silika berliang meso

 

References

1.       Prub, T., Macquarrie, D. J. and Clark, J. H. (2004). Cobalt–acetato complexes immobilised on PYPA-organomodified silica: A case study of different ways of immobilisation. Journal of Molecular Catalysis A: Chemical, 211(1-2): 209 – 217.

2.       Guo, W., Luo, G. S. and Wang, Y. J. (2004). A new emulsion method to synthesize well-defined mesoporous particles. Journal of Colloid and Interface Science271(2): 400 – 406.

3.       Cesarino, I., Marino, G., Matos, J. D. R. and Cavalheiro, É. T. (2007). Using the organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode modifier: determination of cadmium ions by differential anodic pulse stripping voltammetry. Journal of the Brazilian Chemical Society18(4) 810 –817.

4.       Hoffmann, F., Cornelius, M., Morell, J. and Fröba, M. (2006). Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition45(20): 3216 – 3251.

5.       Sun, D., Xie, X. and Zhang, H. (2010). Surface effects of mesoporous silica modified electrode and application in electrochemical detection of dopamine. Colloids and Surfaces B: Biointerfaces75(1): 88 – 92.

6.       Matos, J. R., Mercuri, L. P., Kruk, M. and Jaroniec, M. (2001). Toward the synthesis of extra-large-pore MCM-41 analogues. Chemistry of Materials13(5): 1726 – 1731.

7.       Fuertes, A. B. (2004). Synthesis of ordered nanoporous carbons of tuneable mesopore size by templating SBA-15 silica materials. Microporous and Mesoporous Materials67(2-3): 273 – 281.

8.       Shan, Y., & Gao, L. (2007). Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry and Physics103(2-3): 206-210.

9.       Marino, G., Bergamini, M. F., Teixeira, M. F. and Cavalheiro, E. T. (2003). Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta59(5): 1021 – 1028.

10.    Hassan, H. M., Ab Rahman, N. B. and Jalil, M. N. (2016). Mesoporous silica electrochemical sensors for the detection of ascorbic acid and uric acid. Malaysian Journal of Analytical Sciences20(2): 351 – 357.

11.    Ndamanisha, J. C. and Guo, L. P. (2012). Ordered mesoporous carbon for electrochemical sensing: A review. Analytica Chimica Acta747: 19 – 28.

12.    Lufrano, F. and Staiti, P. (2010). Mesoporous carbon materials as electrodes for electrochemical supercapacitors. International Journal Electrochemical Sciences5: 903 – 916.

13.    Sayari, A., Han, B. H. and Yang, Y. (2004). Simple synthesis route to monodispersed SBA-15 silica rods. Journal of the American Chemical Society126(44): 14348 – 14349.

14.    Dos Santos, S. M. L., Nogueira, K. A. B., de Souza Gama, M., Lima, J. D. F., da Silva Júnior, I. J. and de Azevedo, D. C. S. (2013). Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous and Mesoporous Materials180: 284 – 292.

15.    Lin, C. L., Pang, Y. S., Chao, M. C., Chen, B. C., Lin, H. P., Tang, C. Y. and Lin, C. Y. (2008). Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants. Journal of Physics and Chemistry of Solids69(2-3): 415 – 419.

16.    Tadjarodi, A., Jalalat, V. and Zare-Dorabei, R. (2013). Synthesis and characterization of functionalized SBA-15 Mesoporous Silica by N, N-Bis (salicylidene) ethylenediamine Schiff-Base. Journal of Nanostructures3(4): 477 – 482.

17.    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscow, L., Pierotti, R. A., Rouquerol, J., and Siemienewska T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry57(4): 603-619.

18.    Tadjarodi, A., Jalalat, V. and Zare-Dorabei, R. (2013). Synthesis and characterization of functionalized SBA-15 mesoporous silica by N,N-bis (salicylidene) ethylenediamine Schiff-base. Journal of Nanostructures3(4): 477 – 482.

19.    Ndamanisha, J. C., Bai, J., Qi, B. and Guo, L. (2009). Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Analytical Biochemistry386(1): 79 – 84.

20.    Daniele, S. and Bragato, C. (2014). From macroelectrodes to microelectrodes: Theory and electrode properties in environmental analysis by electrochemical sensors and biosensors. L. Moretto and K. Kalcher (Editors). Springer: New York.

21.    Zhou, M., Guo, J., Guo, L. P. and Bai, J. (2008). Electrochemical sensing platform based on the highly ordered mesoporous carbon− fullerene system. Analytical chemistry, 80(12): 4642 – 4650.

22.    Zhou, M., Ding, J., Guo, L. P. and Shang, Q. K. (2007). Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry79(14): 5328 – 5335.

23.    Yoon, S., Lee, J., Hyeon, T. and Oh, S. M. (2000). Electric double‐layer capacitor performance of a new mesoporous carbon. Journal of the Electrochemical Society147(7): 2507 – 2512.

 




Previous                    Content                    Next