Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 197 - 203
DOI:
10.17576/mjas-2019-2302-03
ELECTROCHEMICAL PROPERTIES OF MESOPOROUS SILICA (SBA-15)-CARBON ELECTRODE
(Ciri Electrokimia Karbon Silica Berliang Meso)
Noramira Saad, Mohammad Noor Jalil*, Zainiharyati Mohd Zain, Hamizah
Mohd Zaki
Faculty of Applied Science,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: moham423@salam.uitm.edu.my
Received: 19
August 2018; Accepted: 14 March 2019
Abstract
Mesoporous silica is material that possesses the pore sizes between 2 nm
to 50 nm which had expanded their applications rapidly. In this study,
mesostructured SBA-15 was synthesized and characterized then the
electrochemical behaviour being analysed to determine the current signal and
the impedance of mesoporous silica carbon electrode. The material with pore
sizes 5.5 nm was successfully synthesized by surfactant templating technique,
using triblock copolymer pluronic (P123) as directing agent and tetraethyl
orthosilicate (TEOS) as silica sources. The synthesized SBA-15 was
characterized using X-ray diffraction (XRD), scanning electron microscope
(SEM), nitrogen adsorption-desorption and infra-red (IR). Two different electrodes
were fabricated which carbon paste electrode (CPE) and hybrid SBA-15 with carbon
paste electrode (SBA-15/MCPE) and analysed using cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS). The SBA-15/MCPE results better
adsorption and enhanced the response signal to 30% and lower resistance
compared to CPE with 179Ω and 187Ω respectively due to addition of meso-sites
which improved the electron pathway This study demonstrates that mesoporous
silica (SBA-15) can be considered as promising material in development of high
performance, lightweight and flexible devices in electrochemistry.
Keywords: mesoporous silica, SBA-15, electrochemical
properties, mesoporous silica-carbon electrode
Abstrak
Bahan
berliang meso ialah bahan yang mempunyai saiz liang antara 2 nm hingga 50 nm
yang telah dikembangkan aplikasinya secara meluas. Dalam kajian ini, SBA-15
berliang meso telah disintesis dan dicirikan. Setelah itu, sifat
elektrokimianya di analisis. Bahan dengan liang bersaiz 5.5 nm berjaya
disintesis melalui teknik templat surfaktan menggunakan triblok ko-polimer
pluronic (P123) sebagai agen pengarah dan tetraetil ortosilikat (TEOS) sebagai
sumber silica. Bahan yang disintesis dicirikan menggunakan teknik pembelauan sinar-X,
mikroskopi imbasan elektron, penyerapan penjerapan nitrogen dan infra merah. Dua
elektrod berbeza telah difabrikasikan, iaitu elektrod pes carbon (CPE) dan
elektrod yang dimodifikasi (SBA-15/MCPE). Kedua-dua elektrod yang difabrikasi
di analisa dengan menggunakan alat voltametri berkitar dan spektroskopi
impedans elektrokimia. SBA-15/MCPE menawarkan penjerapan yang baik dan meningkatkan
signal respon sehingga 30% dan menghasilkan rintangan yang lebih rendah
berbanding CPE iaitu masing-masing 179Ω dan 187Ω. Kajian ini menunjukkan bahawa
SBA-15 boleh dianggap sebagai bahan yang berpotensi dalam menghasilkan alat
yang berprestaai tinggi, ringan dan flexibel dalam electrokimia.
Kata kunci: silica berliang meso, SBA-15, pencirian elektrokimia,
elektrod karbon-silika berliang meso
References
1.
Prub,
T., Macquarrie, D. J. and Clark, J. H. (2004). Cobalt–acetato complexes
immobilised on PYPA-organomodified silica: A case study of different ways of
immobilisation. Journal of Molecular Catalysis A: Chemical, 211(1-2):
209 – 217.
2.
Guo, W., Luo, G.
S. and Wang, Y. J. (2004). A new emulsion method to synthesize well-defined
mesoporous particles. Journal of Colloid and Interface Science, 271(2): 400 – 406.
3.
Cesarino, I.,
Marino, G., Matos, J. D. R. and Cavalheiro, É. T. (2007). Using the
organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode
modifier: determination of cadmium ions by differential anodic pulse stripping
voltammetry. Journal of the Brazilian Chemical Society, 18(4) 810 –817.
4.
Hoffmann, F.,
Cornelius, M., Morell, J. and Fröba, M. (2006). Silica‐based mesoporous
organic–inorganic hybrid materials. Angewandte Chemie International Edition, 45(20): 3216 – 3251.
5.
Sun, D., Xie, X.
and Zhang, H. (2010). Surface effects of mesoporous silica modified electrode
and application in electrochemical detection of dopamine. Colloids and
Surfaces B: Biointerfaces, 75(1):
88 – 92.
6.
Matos, J. R.,
Mercuri, L. P., Kruk, M. and Jaroniec, M. (2001). Toward the synthesis of
extra-large-pore MCM-41 analogues. Chemistry of Materials, 13(5): 1726 – 1731.
7.
Fuertes, A. B.
(2004). Synthesis of ordered nanoporous carbons of tuneable mesopore size by
templating SBA-15 silica materials. Microporous and Mesoporous
Materials, 67(2-3): 273
– 281.
8.
Shan, Y., &
Gao, L. (2007). Formation and characterization of multi-walled carbon
nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry
and Physics, 103(2-3):
206-210.
9.
Marino, G.,
Bergamini, M. F., Teixeira, M. F. and Cavalheiro, E. T. (2003). Evaluation of a
carbon paste electrode modified with organofunctionalized amorphous silica in
the cadmium determination in a differential pulse anodic stripping voltammetric
procedure. Talanta, 59(5):
1021 – 1028.
10.
Hassan, H. M.,
Ab Rahman, N. B. and Jalil, M. N. (2016). Mesoporous silica electrochemical
sensors for the detection of ascorbic acid and uric acid. Malaysian
Journal of Analytical Sciences, 20(2):
351 – 357.
11.
Ndamanisha, J.
C. and Guo, L. P. (2012). Ordered mesoporous carbon for electrochemical
sensing: A review. Analytica Chimica Acta, 747: 19 – 28.
12.
Lufrano, F. and Staiti,
P. (2010). Mesoporous carbon materials as electrodes for electrochemical
supercapacitors. International Journal Electrochemical Sciences, 5: 903 – 916.
13.
Sayari, A., Han,
B. H. and Yang, Y. (2004). Simple synthesis route to monodispersed SBA-15
silica rods. Journal of the American Chemical Society, 126(44): 14348 – 14349.
14.
Dos Santos, S.
M. L., Nogueira, K. A. B., de Souza Gama, M., Lima, J. D. F., da Silva Júnior,
I. J. and de Azevedo, D. C. S. (2013). Synthesis and characterization of
ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of
biomolecules. Microporous and Mesoporous Materials, 180: 284 – 292.
15.
Lin, C. L.,
Pang, Y. S., Chao, M. C., Chen, B. C., Lin, H. P., Tang, C. Y. and Lin, C. Y.
(2008). Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated
with neutral block copolymer surfactants. Journal of Physics and
Chemistry of Solids, 69(2-3):
415 – 419.
16.
Tadjarodi, A.,
Jalalat, V. and Zare-Dorabei, R. (2013). Synthesis and characterization of
functionalized SBA-15 Mesoporous Silica by N, N-Bis (salicylidene)
ethylenediamine Schiff-Base. Journal of Nanostructures, 3(4): 477 – 482.
17.
Sing, K. S. W.,
Everett, D. H., Haul, R. A. W., Moscow, L., Pierotti, R. A., Rouquerol, J., and
Siemienewska T. (1985). Reporting physisorption data for gas/solid systems with
special reference to the determination of surface area and porosity. Pure
and Applied Chemistry, 57(4):
603-619.
18.
Tadjarodi, A.,
Jalalat, V. and Zare-Dorabei, R. (2013). Synthesis and characterization of
functionalized SBA-15 mesoporous silica by N,N-bis (salicylidene)
ethylenediamine Schiff-base. Journal of Nanostructures, 3(4): 477 – 482.
19.
Ndamanisha, J.
C., Bai, J., Qi, B. and Guo, L. (2009). Application of electrochemical
properties of ordered mesoporous carbon to the determination of glutathione and
cysteine. Analytical Biochemistry, 386(1): 79 – 84.
20.
Daniele, S. and Bragato, C. (2014). From macroelectrodes to microelectrodes: Theory and electrode
properties in environmental analysis by electrochemical sensors and biosensors.
L. Moretto and K. Kalcher (Editors). Springer: New York.
21.
Zhou, M., Guo,
J., Guo, L. P. and Bai, J. (2008). Electrochemical sensing platform based on
the highly ordered mesoporous carbon− fullerene system. Analytical
chemistry, 80(12): 4642 – 4650.
22.
Zhou, M., Ding,
J., Guo, L. P. and Shang, Q. K. (2007). Electrochemical behavior of L-cysteine
and its detection at ordered mesoporous carbon-modified glassy carbon
electrode. Analytical Chemistry, 79(14): 5328 – 5335.
23.
Yoon, S., Lee,
J., Hyeon, T. and Oh, S. M. (2000). Electric double‐layer capacitor performance
of a new mesoporous carbon. Journal of the Electrochemical Society, 147(7): 2507 – 2512.