Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 189 - 196

DOI: 10.17576/mjas-2019-2302-02

 

 

 

SYNTHESIS AND CHARACTERISATION OF

N-ANALINEFERROCENYLAMIDE VIA CARBODIIMIDE COUPLING

 

(Sintesis dan Pencirian N-Analineferosenilamida melalui Gandingan Silang Karbodiimida)

 

Ken Min Liew1, Tei Tagg1, Wan M. Khairul1,2*

 

1 School of Fundamental Science

2Advanced Nano Materials (ANoMa) Research Group, School of Fundamental Science

 Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  wmkhairul@umt.edu.my

 

 

Received: 24 February 2019; Accepted: 24 March 2019

 

 

Abstract

Ferrocene is an orthodox organometallic complex.  This “sandwich compound” was found to have great flexibility in chemical reactions. The use of ferrocenyl derivatives branches into various interesting fields especially for biological applications. Derivatives of ferrocenylamides are of great interest in the field of medicine and biology researches, due to their ability to bind with various biomolecules, i.e. DNA. Thus, a simple yet effective method in the formation of ferrocenylamide derivatives is desirable. Ferrocene is stable in both aqueous and aerobic media, it also has a certain degree of resistance to thermal degradation, and hence the synthesis of ferrocenyl derivatives via carbodiimide coupling is possible. In this work, N-analineferrocenylamide was synthesised from 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine (EDC) coupling of ferrocenecarboxylic acid and p-phenylenediamine. This synthesis approach is a simple and easy one-pot reaction without the need of tedious conditions and has a good product yield.

 

Keywords:  ferrocene, amide, EDC coupling

 

Abstrak

Ferosena merupakan kompleks organologam yang ortordoks. “Sebatian sandwich” ini didapati mempunyai pelbagai kebolehan di dalam tindakbalas kimia. Pengunaan terbitan-terbitan ferosena terjangkau di dalam pelbagai bidang yang menarik terutamanya dalam aplikasi biologi. Terbitan-terbitan ferosenilamida telah menarik minat yang mendalam dalam kajian bidang perubatan dan biologi, berdasarkan keupayaannya untuk terikat dengan pelbagai biomolekul seperti DNA. Justeru itu, kaedah yang ringkas dan efektif dalam pembentukan terbitan-terbitan ferosenilamida telah menjadi keutamaan. Ferosena adalah stabil di dalam kedua-dua media akues dan aerobik, ia juga mempunyai darjah keupayaan rintangan yang tertentu terhadap penguraian terma, yang telah memungkinkan sintesis terbitan-terbitan ferosena melalui gandingan silang karbodiimida. Di dalam kajian ini, N-analinaferosenilamida telah disintesiskan daripada gandingan silang 3-(etiliminometilenaamino)-N,N-dimetilpropan-1-amina (EDC) terhadap asid karboksilikferosena dan p-fenilenadiamina. Pendekatan sintesis adalah tindakbalas satu pot yang ringkas dan mudah tanpa memerlukan keadaan yang remeh dan berjaya menghasilkan hasilan yang baik.

 

Kata kunci:  ferosena, amida, gantian silang EDC

 

References

1.     Singh, A., Saha, S. T., Perumal, S., Kaur, M. and Kumar, V. (2018). Azide−alkyne cycloaddition en route to 1H1,2,3-triazole-tethered isatin−ferrocene, ferrocenylmethoxy−isatin, and isatin−ferrocenylchalcone conjugates: synthesis and antiproliferative evaluation. ACS Omega, 3(1): 1263 – 1268.

2.     Vashisht Gopal, Y. N., Jayaraju, D. and Kondapi, A. K. (2000). Topoisomerase II poisoning and antineoplastic action by DNA-nonbinding diacetyl and dicarboxaldoxime derivatives of ferrocene. Archives of Biochemistry and Biophysics, 376(1): 229 – 235.

3.     Altaf, A. A., Lal, B., Badshah, A., Usman, M., Chatterjee, P. B., Huq, F., Ullah, S. and Crans, D. C. (2016). Synthesis, structural characterization, modal membrane interaction and anti-tumor cell line studies of nitrophenyl ferrocenes. Journal of Molecular Structure, 1113: 162 – 170.

4.     Hodík, T., Lamač, M., Červenková Šťastná, L., Cuřínová, P., Karban, J., Skoupilová, H., Hrstka, R., Císařová, I., Gyepes, R. and Pinkas, J. (2017). Improving cytotoxic properties of ferrocenes by incorporation of saturated N-heterocycles. Journal of Organometallic Chemistry, 846: 141 – 151.

5.     Lippert, R., Shubina, T. E., Vojnovic, S., Pavic, A., Veselinovic, J., Nikodinovic-Runic, J., Stankovic, N., and Ivanović-Burmazović, I. (2017). Redox behavior and biological properties of ferrocene bearing porphyrins. Journal of Inorganic Biochemistry, 171: 76 – 89.

6.     Narváez-Pita, X., Rheingold, A. L., Meléndez, E. (2017). Ferrocene-steroid conjugates: Synthesis, structure and biological activity. Journal of Organometallic Chemistry, 846: 113 – 120.

7.     Pérez, W. I., Soto, Y., Ortíz, C., Matta, J. and Meléndez, E. (2015). Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorganic & Medicinal Chemistry, 23(3): 471 – 479.

8.     Sarkar, T., Banerjee, S., Mukherjee, S., Hussain, A. (2016). Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium(iii) complex of terpyridine and curcumin in cancer cells. Dalton Transactions, 45(15): 6424 – 6438.

9.     Muenzner, J. K., Ahmad, A., Rothemund, M., Schrüfer, S., Padhye, S., Sarkar, F. H., Schobert, R., Biersack, B. (2016). Ferrocene-substituted 3,3′-diindolylmethanes with improved anticancer activity. Applied Organometallic Chemistry, 30(6): 441 – 445.

10. Takarada, J. E., Guedes, A. P. M., Correa, R. S., Silveira-Lacerda, E. de P., Castelli, S., Iacovelli, F., Deflon, V. M., Batista, A. A. and Desideri, A. (2017). Ru/Fe bimetallic complexes: Synthesis, characterization, cytotoxicity and study of their interactions with DNA/HSA and human topoisomerase IB. Archives Biochemistry and Biophysics, 636: 28 – 41.

11. Kulbaba, K. and Manners, I. (2001). Polyferrocenylsilanes: Metalcontaining polymers for materials science, selfassembly and nanostructure applications. Macromolecular rapid communications, 22(10): 711 – 724.

12. Butsugan, Y., Araki, S. and Watanabe, M. (1995). Ferrocenes 3 enantioselective addition of dialkylzinc to aldehydes catalyzed by chiral ferrocenyl aminoalcohols. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, 143 – 168.

13. Taei, M., Hasanpour, F. and Zahedi, G. (2015). Application of new ferrocene derivative for electrocatalytic determination of captopril using multiwall carbon nanotube modified carbon paste electrode. Bulletin of Chemical Society Ethiopia, 29(1): 149 – 156.

14. Ferreira, C. L., Ewart, C. B., Barta, C. A., Little, S., Yardley, V., Martins, C., Polishchuk, E., Smith, P. J., Moss, J. R., Merkel, M., Adam, M. J. and Orvig, C. (2006). Synthesis, structure, and biological activity of ferrocenyl carbohydrate conjugates. Inorganic Chemistry, 45(20): 8414 – 8422.

15. Zhao, M., Shao, G.-K., Huang, D.-D., Lv, X.-X. and Guo, D.-S. (2017). Synthesis, crystal structures and properties of ferrocenyl bis-amide derivatives yielded via the ugi four-component reaction. Molecules, 22 (5): 737.

16. Akbarzadeh, R., Mirzaei, P. and Bazgir, A. (2010). A simple synthesis of ferrocenyl bis-amides by a ugi four-component reaction. Journal of Organometallic Chemistry, 695(21):, 2320 – 2324.

17. Ekti, S. F. and Hür, D. (2008). Microwave assisted synthesis of ferrocene amides. Inorganic Chemistry Communications, 11(9): 1027 – 1029.

18. Huang, X.-F., Tang, J.-F., Ji, J.-L., Wang, X.-L. and Ruan, B.-F. (2012). Synthesis, characterization and antitumor activity of novel amide derivatives containing ferrocenyl pyrazol-moiety. Journal of Organometallic Chemistry, 706707: 113 – 123.

19. Huang, X. F., Wang, L. Z., Tang, L., Lu, Y. X., Wang, F., Song, G. Q. and Ruan, B. F. (2014). Synthesis, characterization and antitumor activity of novel ferrocene derivatives containing pyrazolyl-moiety. Journal of Organometallic Chemistry, 749: 157 – 162.

20. Boden, E. P. and Keck, G. E. (1985). Proton-Transfer Steps in Steglich Esterification: A Very Practical New Method for Macrolactonization. Journal of Organic Chemistry, 50 (13): 2394 – 2395.

21. Pon, R. T. (1987). Enhanced coupling efficiency using 4-dimethylaminopyridine (DMAP) and either tetrazole, 5-(o-nitrophenyl) tetrazole, or 5-(p-nitrophenyl) tetrazole in the solid phase synthesis of oligoribonucleotides by the phosphoramidite procedure. Tetrahedron Letters, 28(32): 3643 – 3646.

22. Montalbetti, C. A. G. N. and Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61(46): 10827 – 10852.

23. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. (2016) Gaussian 16 Revision B.01. Gaussian Inc.: Wallingford CT 2016.

24. Srinivas, P., Prabhakar, S., Chevallier, F., Nassar, E., Erb, W., Dorcet, V., Jouikov, V., Radha Krishna, P. and Mongin, F. (2016). Synthesis of ferrocene amides and esters from aminoferrocene and 2-substituted ferrocenecarboxylic acid and properties thereof. New Journal of Chemistry, 40(11): 9441 – 9447.

25. Sosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D. and Dixon, D. A. (1992). A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. The Journal of Physical Chemistry, 96(16): 6630 – 6636.

26.  Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2015). Introduction to Spectroscopy, Fifth Edition. Cengage Learning Asia, Singapore: pp. 390 – 397.

27.  Kuo, L. J., Liao, J. H., Chen, C. T., Huang, C. H., Chen, C. S. and Fang, J. M. (2003). Two-arm ferrocene amide compounds: Synclinal conformations for selective sensing of dihydrogen phosphate ion. Organic Letters, 5(11): 1821 – 1824.

28.  Kienz, T., Förster, C. and Heinze, K. (2014). Impact of O → S exchange in ferrocenyl amides on the structure and redox chemistry. Organometallics, 33(18), 4803 – 4812.

29.  Carty, P., Grant, J. and Simpson, A. (1988) Synthesis of a novel ferrocene derivative having flameretardant and smokesuppressant properties. Applied Organometallic Chemistry, 2(3): 277 – 280.

30.  N’Da David, D., Breytenbach Jaco, C., Smith Peter, J. and Lategan, C. (2010). Synthesis, cytotoxicity and antimalarial activity of ferrocenyl amides of 4-aminoquinolines. Arzneimittelforschung, 60(10), 627 – 635.

31.  Javed, F., Altaf, A. A., Badshah, A., Tahir, M. N., Siddiq, M., Zia-Ur-Rehman, Shah, A., Ullah, S. and Lal, B. (2012). New supramolecular ferrocenyl amides: synthesis, characterization, and preliminary DNA-binding studies. Journal of Coordination Chemistry, 65(6): 969 – 979.

32.  Siebler, D., Linseis, M., Gasi, T., Carrella, L. M., Winter, R. F., Förster, C. and Heinze, K. (2011). Oligonuclear ferrocene amides: Mixed-valent peptides and potential redox-switchable foldamers. Chemistry - A European Journal, 17(16): 4540 – 4551.

33.  Heinze, K. and Schlenker, M. (2004) Main chain ferrocenyl amides from 1-aminoferrocene-1-carboxylic acid. European Journal of Inorganic Chemistry, 2004(14): 2974 – 2988.

34.  Etter, M., Nigar, A., Ali, N. Z., Akhter, Z. and Dinnebier, R. E. (2016). Synthesis, spectroscopic and structural perspective of new ferrocenyl amides. Solid State Science, 55: 29 – 35.

35.  Thomas, D. W. and Martell, A. E. (1956). Absorption Spectra of Para-Substituted Tetraphenylporphines1,2. Journal of American Chemical Society, 78(7): 1338–1343.

36.  Sax, K. J., Saari, W. S., Mahoney, C. L. and Gordon, J. M. (1960). Preparation and infrared absorption spectra of some phenyl ethers. Journal of Organic Chemistry, 25(9): 1590 – 1595.

37.  Dunkers, J. and Ishida, H. (1995). Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2h-1,3-benzoxazines in the fingerprint region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(6): 1061–1074.

38.  Altaf, A. A., Badshah, A., Khan, N., Tahir, M. N. (2010). (4-ferrocenylphenyl)benzamide. Acta Crystallography Section E, 66(7): 831.

39.  Han, S.-Y. and Kim, Y.-A. (2004). Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 60(11): 2447 – 2467.

40.  Valeur, E. and Bradley, M. (2009). Amide bond formation: Beyond the myth of coupling reagents. Chemical Society Reviews, 38(2): 606 – 631.

41.  Williams, A. and Ibrahim, I. T. (1981). A new mechanism involving cyclic tautomers for the reaction with nucleophiles of the water-soluble peptide coupling reagent 1-ethyl-3-(3’-(dimethylamino) propyl) carbodiimide (EDC). Journal of the American Chemical Society, 103(24): 7090 – 7095.

42.  Xu, S., Held, I., Kempf, B., Mayr, H., Steglich, W. and Zipse, H. (2005). The DMAP-catalyzed acetylation of alcohols - a mechanistic study (DMAP = 4-(Dimethylamino)Pyridine). Chemistry - A European Journal, 11(16): 4751 – 4757.

43.  Vashist, S. K. (2012). Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics, 23 – 33.

44.  Mojarradi, H. (2010). Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation. Independent Thesis Advanced Level of Professional Degree, Department of Biochemistry and Organic Chemistry, Chemistry, Disciplinary Domain of Science and Technology, Uppsala University.

 

 

 

 

 

 




Previous                    Content                    Next