Malaysian Journal of Analytical Sciences Vol 23 No 2
(2019): 189 - 196
DOI:
10.17576/mjas-2019-2302-02
SYNTHESIS AND
CHARACTERISATION OF
N-ANALINEFERROCENYLAMIDE
VIA CARBODIIMIDE COUPLING
(Sintesis dan
Pencirian N-Analineferosenilamida
melalui Gandingan Silang Karbodiimida)
Ken Min Liew1,
Tei Tagg1, Wan M. Khairul1,2*
1 School of Fundamental Science
2Advanced Nano Materials (ANoMa) Research Group, School
of Fundamental Science
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author:
wmkhairul@umt.edu.my
Received: 24
February 2019; Accepted: 24 March 2019
Abstract
Ferrocene is an
orthodox organometallic complex. This
“sandwich compound” was found to have great flexibility in chemical reactions.
The use of ferrocenyl derivatives branches into various interesting fields
especially for biological applications. Derivatives of ferrocenylamides are of
great interest in the field of medicine and biology researches, due to their
ability to bind with various biomolecules, i.e. DNA. Thus, a simple yet
effective method in the formation of ferrocenylamide derivatives is desirable.
Ferrocene is stable in both aqueous and aerobic media, it also has a certain degree
of resistance to thermal degradation, and hence the synthesis of ferrocenyl
derivatives via carbodiimide coupling is possible. In this work, N-analineferrocenylamide was synthesised
from 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine
(EDC) coupling of ferrocenecarboxylic acid and p-phenylenediamine. This synthesis approach is a simple and easy
one-pot reaction without the need of tedious conditions and has a good product
yield.
Keywords: ferrocene, amide, EDC coupling
Abstrak
Ferosena merupakan kompleks
organologam yang ortordoks. “Sebatian sandwich” ini didapati mempunyai pelbagai
kebolehan di dalam tindakbalas kimia. Pengunaan terbitan-terbitan ferosena
terjangkau di dalam pelbagai bidang yang menarik terutamanya dalam aplikasi
biologi. Terbitan-terbitan ferosenilamida telah menarik minat yang mendalam
dalam kajian bidang perubatan dan biologi, berdasarkan keupayaannya untuk
terikat dengan pelbagai biomolekul seperti DNA. Justeru itu, kaedah yang
ringkas dan efektif dalam pembentukan terbitan-terbitan ferosenilamida telah
menjadi keutamaan. Ferosena adalah stabil di dalam kedua-dua media akues dan
aerobik, ia juga mempunyai darjah keupayaan rintangan yang tertentu terhadap
penguraian terma, yang telah memungkinkan sintesis terbitan-terbitan ferosena
melalui gandingan silang karbodiimida. Di dalam kajian ini, N-analinaferosenilamida telah
disintesiskan daripada gandingan silang 3-(etiliminometilenaamino)-N,N-dimetilpropan-1-amina
(EDC) terhadap asid karboksilikferosena dan p-fenilenadiamina.
Pendekatan sintesis adalah tindakbalas satu pot yang ringkas dan mudah tanpa
memerlukan keadaan yang remeh dan berjaya menghasilkan hasilan yang baik.
Kata kunci: ferosena, amida, gantian silang EDC
References
1. Singh, A., Saha, S. T., Perumal, S., Kaur,
M. and Kumar, V. (2018). Azide−alkyne
cycloaddition en route to 1H‑1,2,3-triazole-tethered isatin−ferrocene, ferrocenylmethoxy−isatin, and
isatin−ferrocenylchalcone conjugates: synthesis and antiproliferative
evaluation. ACS Omega, 3(1):
1263 – 1268.
2. Vashisht
Gopal, Y. N., Jayaraju, D. and Kondapi, A. K. (2000). Topoisomerase II poisoning and antineoplastic action by
DNA-nonbinding diacetyl and dicarboxaldoxime derivatives of ferrocene. Archives
of Biochemistry and Biophysics, 376(1):
229 – 235.
3. Altaf,
A. A., Lal, B., Badshah, A., Usman, M., Chatterjee, P. B., Huq, F., Ullah, S. and
Crans, D. C. (2016). Synthesis,
structural characterization, modal membrane interaction and anti-tumor cell
line studies of nitrophenyl ferrocenes. Journal of Molecular Structure, 1113: 162 – 170.
4. Hodík,
T., Lamač, M., Červenková Šťastná, L., Cuřínová, P., Karban, J., Skoupilová,
H., Hrstka, R., Císařová, I., Gyepes, R. and Pinkas, J. (2017). Improving cytotoxic properties
of ferrocenes by incorporation of saturated N-heterocycles. Journal of
Organometallic Chemistry, 846:
141 – 151.
5. Lippert,
R., Shubina, T. E., Vojnovic, S., Pavic, A., Veselinovic, J.,
Nikodinovic-Runic, J., Stankovic, N., and Ivanović-Burmazović, I. (2017). Redox behavior and biological
properties of ferrocene bearing porphyrins. Journal of Inorganic Biochemistry,
171: 76 – 89.
6. Narváez-Pita,
X., Rheingold, A. L., Meléndez, E. (2017).
Ferrocene-steroid conjugates: Synthesis, structure and biological activity. Journal
of Organometallic Chemistry, 846:
113 – 120.
7. Pérez,
W. I., Soto, Y., Ortíz, C., Matta, J. and Meléndez, E. (2015). Ferrocenes as potential chemotherapeutic drugs: Synthesis,
cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorganic
& Medicinal Chemistry, 23(3):
471 – 479.
8. Sarkar,
T., Banerjee, S., Mukherjee, S., Hussain, A. (2016). Mitochondrial selectivity and remarkable photocytotoxicity
of a ferrocenyl neodymium(iii) complex of terpyridine and curcumin in cancer cells.
Dalton Transactions, 45(15):
6424 – 6438.
9. Muenzner,
J. K., Ahmad, A., Rothemund, M., Schrüfer, S., Padhye, S., Sarkar, F. H.,
Schobert, R., Biersack, B. (2016).
Ferrocene-substituted 3,3′-diindolylmethanes with improved anticancer activity.
Applied Organometallic Chemistry, 30(6):
441 – 445.
10. Takarada,
J. E., Guedes, A. P. M., Correa, R. S., Silveira-Lacerda, E. de P., Castelli,
S., Iacovelli, F., Deflon, V. M., Batista, A. A. and Desideri, A. (2017). Ru/Fe bimetallic complexes:
Synthesis, characterization, cytotoxicity and study of their interactions with
DNA/HSA and human topoisomerase IB. Archives Biochemistry and Biophysics,
636: 28 – 41.
11. Kulbaba,
K. and Manners, I. (2001). Polyferrocenylsilanes: Metal‐containing polymers for materials
science, self‐assembly and nanostructure
applications. Macromolecular rapid communications, 22(10): 711 – 724.
12. Butsugan,
Y., Araki, S. and Watanabe, M. (1995).
Ferrocenes 3 enantioselective addition of dialkylzinc to aldehydes catalyzed by
chiral ferrocenyl aminoalcohols. Ferrocenes: Homogeneous Catalysis, Organic
Synthesis, Materials Science, 143 – 168.
13. Taei,
M., Hasanpour, F. and Zahedi, G. (2015).
Application of new ferrocene derivative for electrocatalytic determination of
captopril using multiwall carbon nanotube modified carbon paste electrode. Bulletin
of Chemical Society Ethiopia, 29(1):
149 – 156.
14. Ferreira,
C. L., Ewart, C. B., Barta, C. A., Little, S., Yardley, V., Martins, C.,
Polishchuk, E., Smith, P. J., Moss, J. R., Merkel, M., Adam, M. J. and Orvig,
C. (2006). Synthesis, structure,
and biological activity of ferrocenyl carbohydrate conjugates. Inorganic
Chemistry, 45(20): 8414 –
8422.
15. Zhao,
M., Shao, G.-K., Huang, D.-D., Lv, X.-X. and Guo, D.-S. (2017). Synthesis, crystal structures
and properties of ferrocenyl bis-amide derivatives yielded via the ugi
four-component reaction. Molecules, 22 (5): 737.
16. Akbarzadeh,
R., Mirzaei, P. and Bazgir, A. (2010). A
simple synthesis of ferrocenyl bis-amides by a ugi four-component reaction.
Journal of Organometallic Chemistry, 695(21):, 2320 – 2324.
17. Ekti,
S. F. and Hür, D. (2008).
Microwave assisted synthesis of ferrocene amides. Inorganic Chemistry
Communications, 11(9): 1027
– 1029.
18. Huang,
X.-F., Tang, J.-F., Ji, J.-L., Wang, X.-L. and Ruan, B.-F. (2012). Synthesis, characterization and
antitumor activity of novel amide derivatives containing ferrocenyl
pyrazol-moiety. Journal of Organometallic Chemistry, 706–707: 113 – 123.
19. Huang,
X. F., Wang, L. Z., Tang, L., Lu, Y. X., Wang, F., Song, G. Q. and Ruan, B. F.
(2014). Synthesis, characterization and antitumor activity of novel ferrocene
derivatives containing pyrazolyl-moiety. Journal of Organometallic Chemistry,
749: 157 – 162.
20. Boden,
E. P. and Keck, G. E. (1985). Proton-Transfer Steps in Steglich Esterification:
A Very Practical New Method for Macrolactonization. Journal of Organic
Chemistry, 50 (13): 2394 –
2395.
21. Pon,
R. T. (1987). Enhanced coupling efficiency using 4-dimethylaminopyridine (DMAP)
and either tetrazole, 5-(o-nitrophenyl) tetrazole, or 5-(p-nitrophenyl)
tetrazole in the solid phase synthesis of oligoribonucleotides by the
phosphoramidite procedure. Tetrahedron Letters, 28(32): 3643 – 3646.
22. Montalbetti,
C. A. G. N. and Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron,
61(46): 10827 – 10852.
23. Frisch,
M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman,
J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X.,
Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R.,
Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J.
L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng,
B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J.,
Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R.,
Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H.,
Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F.,
Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N.,
Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P.,
Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M.,
Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas,
O., Foresman, J. B., Fox, D. J. (2016) Gaussian 16 Revision B.01. Gaussian
Inc.: Wallingford CT 2016.
24. Srinivas,
P., Prabhakar, S., Chevallier, F., Nassar, E., Erb, W., Dorcet, V., Jouikov,
V., Radha Krishna, P. and Mongin, F. (2016). Synthesis of ferrocene amides and
esters from aminoferrocene and 2-substituted ferrocenecarboxylic acid and
properties thereof. New Journal of Chemistry, 40(11): 9441 – 9447.
25. Sosa,
C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D. and Dixon, D. A.
(1992). A local density functional study of the structure and vibrational
frequencies of molecular transition-metal compounds. The Journal of Physical
Chemistry, 96(16):
6630 – 6636.
26. Pavia,
D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2015). Introduction to Spectroscopy, Fifth
Edition. Cengage Learning Asia, Singapore: pp. 390 – 397.
27. Kuo, L. J., Liao, J. H., Chen, C. T., Huang, C. H.,
Chen, C. S. and Fang, J. M. (2003). Two-arm ferrocene amide compounds: Synclinal
conformations for selective sensing of dihydrogen phosphate ion. Organic
Letters, 5(11): 1821 –
1824.
28. Kienz,
T., Förster, C. and Heinze, K. (2014). Impact of O → S exchange in ferrocenyl amides
on the structure and redox chemistry. Organometallics, 33(18), 4803 – 4812.
29. Carty,
P., Grant, J. and Simpson, A. (1988) Synthesis of a novel ferrocene derivative
having flame‐retardant and smoke‐suppressant properties. Applied
Organometallic Chemistry, 2(3):
277 – 280.
30. N’Da
David, D., Breytenbach Jaco, C., Smith Peter, J. and Lategan, C. (2010). Synthesis, cytotoxicity and
antimalarial activity of ferrocenyl amides of 4-aminoquinolines. Arzneimittelforschung,
60(10), 627 – 635.
31. Javed, F., Altaf, A. A., Badshah, A., Tahir,
M. N., Siddiq, M., Zia-Ur-Rehman, Shah, A., Ullah, S. and Lal, B. (2012). New
supramolecular ferrocenyl amides: synthesis, characterization, and preliminary DNA-binding
studies. Journal of Coordination Chemistry, 65(6): 969 – 979.
32. Siebler, D., Linseis, M., Gasi, T., Carrella,
L. M., Winter, R. F., Förster, C. and Heinze, K. (2011). Oligonuclear ferrocene
amides: Mixed-valent peptides and potential redox-switchable foldamers. Chemistry
- A European Journal, 17(16):
4540 – 4551.
33. Heinze, K. and Schlenker, M. (2004) Main chain
ferrocenyl amides from 1-aminoferrocene-1-carboxylic acid. European Journal
of Inorganic Chemistry, 2004(14):
2974 – 2988.
34. Etter, M., Nigar, A., Ali, N. Z., Akhter, Z.
and Dinnebier, R. E. (2016). Synthesis, spectroscopic and structural
perspective of new ferrocenyl amides. Solid State Science, 55: 29 – 35.
35. Thomas,
D. W. and Martell, A. E. (1956). Absorption Spectra of Para-Substituted
Tetraphenylporphines1,2. Journal of American Chemical Society, 78(7): 1338–1343.
36. Sax, K. J., Saari, W. S., Mahoney, C. L. and Gordon,
J. M. (1960). Preparation and infrared absorption spectra of some phenyl
ethers. Journal of Organic Chemistry, 25(9): 1590 – 1595.
37. Dunkers, J. and Ishida, H. (1995). Vibrational
assignments of 3-alkyl-3,4-dihydro-6-methyl-2h-1,3-benzoxazines in the
fingerprint region. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 51(6):
1061–1074.
38. Altaf, A. A., Badshah, A., Khan, N., Tahir, M.
N. (2010). (4-ferrocenylphenyl)benzamide. Acta Crystallography Section E, 66(7): 831.
39. Han, S.-Y. and Kim, Y.-A. (2004). Recent
development of peptide coupling reagents in organic synthesis. Tetrahedron,
60(11): 2447 – 2467.
40. Valeur, E. and Bradley, M. (2009). Amide bond
formation: Beyond the myth of coupling reagents. Chemical Society Reviews,
38(2): 606 – 631.
41. Williams, A. and Ibrahim, I. T. (1981). A new
mechanism involving cyclic tautomers for the reaction with nucleophiles of the
water-soluble peptide coupling reagent 1-ethyl-3-(3’-(dimethylamino) propyl)
carbodiimide (EDC). Journal of the American Chemical Society, 103(24): 7090 – 7095.
42. Xu, S., Held, I., Kempf, B., Mayr, H.,
Steglich, W. and Zipse, H. (2005). The DMAP-catalyzed acetylation of alcohols -
a mechanistic study (DMAP = 4-(Dimethylamino)Pyridine). Chemistry - A
European Journal, 11(16):
4751 – 4757.
43. Vashist, S. K. (2012). Comparison of
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink
antibodies on amine-functionalized platforms for immunodiagnostic applications.
Diagnostics, 23 – 33.
44. Mojarradi, H. (2010). Coupling of substances
containing a primary amine to hyaluronan via carbodiimide-mediated amidation.
Independent Thesis Advanced Level of Professional Degree, Department of
Biochemistry and Organic Chemistry, Chemistry, Disciplinary Domain of Science
and Technology, Uppsala University.