Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 355 - 361

DOI: 10.17576/mjas-2019-2302-19

 

 

 

EFFECTS OF GRAPHITE/POLYPROPYLENE ON THE ELECTRICAL CONDUCTIVITY OF MANUFACTURED BIPOLAR PLATE

 

(Kesan Komposit Polimer Pengalir Grafit/Polipropilena Komposit Polimer Pengalir Ke atas Sifat Kekonduksian Elektrik bagi Pembuatan Plat Dwikutub)

 

Iswandi1,2, Abu Bakar Sulong1, Teuku Husaini1,3*

 

1Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Mechanical Engineering,

Institut Teknologi Medan, Medan 20152, Indonesia

3Department of Chemical Engineering,

Universitas Sumatera Utara, USU 20155, Indonesia

 

*Corresponding author:  t.husaini.st@gmail.com

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Conductive polymer composite (CPC) has been used on bipolar plates by compression and injection molding methods. The CPC material comprises 25% polypropylene and 75%graphite with size variation (40, 100, 150, and 200 µm) according to particle size dispersion test. The composite is mixed using an internal mixer to obtain a homogeneous mixture at a process temperature of 200 °C. Electrical conductivity tests are performed on each particle size composition. The highest electrical conductivity produced by compression and injection molding methods is 17 and 12 S/cm, respectively. These values are both obtained on a 40 μm graphite filler. Results show that the type of manufacturing process affects the value of electrical conductivity using the same material.

 

Keywords:  injection molding, compression molding, bipolar plate

 

Abstrak

Komposit polimer pengalir (KPP) telah digunakan pada plat dwikutub dengan kaedah pengacuan mampatan dan pengacuan suntikan. Komposisi bahan KPP adalah polipropilena (PP) 25% dan grafit (G) 75% berat dengan variasi saiz 40 µm, 100 µm, 150 µm dan 200 µm dan dijalankan ujian serakan partikel saiz. Komposit dicampur menggunakan campuran dalaman untuk mendapatkan campuran yang sekata pada suhu proses 200 °C. Pengujian kekonduksian elektrik dijalankan pada masing-masing komposisi saiz partikel. Nilai kekonduksian elektrik tertinggi ditunjukkan pada pengisi grafit saiz 40 µm, pada masing-masing kaedah pembuatan. Kekonduksian elektrik tertinggi dihasilkan melalui kaedah pengacuan mampatan iaitu 17 S/cm dan proses pengacuan suntikan adalah 12 S/cm. Keputusan ujian menunjukkan bahawa proses pembuatan memberi kesan ke atas nilai kekonduksian elektrik menggunakan bahan yang sama.

 

Kata kunci:  pengacuan suntikan, pengacuan mampatan, plat dwikutub

 

References

1.       Antunes, R. A., De Oliveira, M. C., Ett, G. and Ett, V. (2011). Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources, 196(6): 2945-2961.

2.       Hermann, A., Chaudhuri, T. and Spagnol, P. (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 30(12): 1297-1302.

3.       Hsiao, M. C., Liao, S. H., Yen, M. Y., Ma, C. C. M., Lee, S. J., Lin, Y. F. and Hung, C. H. (2009). Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells. In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology: pp. 871-878.

4.       Clingerman, M. L., Weber, E. H., King, J. A. and Schulz, K. H. (2002). Synergistic effect of carbon fillers in electrically conductive nylon 6, 6 and polycarbonate based resins. Polymer Composites, 23(5): 911-924.

5.       Blunk, R., Elhamid, M. H. A., Lisi, D. and Mikhail, Y. (2006). Polymeric composite bipolar plates for vehicle applications. Journal of Power Sources, 156(2): 151-157.

6.       Heinzel, A., Mahlendorf, F., Niemzig, O. and Kreuz, C. (2004). Injection moulded low cost bipolar plates for PEM fuel cells. Journal of Power Sources, 131(1-2): 35-40.

7.       Taherian, R. (2014). A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 265: 370-390.

8.       Taherian, R., Hadianfard, M. J. and Golikand, A. N. (2013). Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells. Materials & Design, 49: 242-251.

9.       Robberg, K. (2003). Handbook of fuel cells-fundamentals, technology and application. Fuel cell technology and application. Wiley & Sons: New York: pp. 308-314.

10.    German, R. M. and Bose, A. (1997). Injection molding of metals and ceramics. Princeton, New Jersey: Metal Powder Industries Federation.

11.    Mighri, F., Huneault, M. A. and Champagne, M. F. (2004). Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application. Polymer Engineering & Science, 44(9): 1755-1765.

12.    Pozio, A., Zaza, F., Masci, A. and Silva, R. F. (2008). Bipolar plate materials for PEMFCs: A conductivity and stability study. Journal of Power Sources, 179(2): 631-639.

13.    Iswandi, S., J.,  Sulong, A. B. and Husaini, T. (2016). Critical powder loading and rheological properties of polypropylene/graphite composite feedstock for bipolar plate application. Malaysian Journal of Analytical Sciences, 20(3): 687-696.

14.    Zhang, J., Zou, Y. and He, J. (2005). Influence of graphite particle size and its shape on performance of carbon composite bipolar plate. Journal of Zhejiang University Science, 6(10): 1080-1083.

15.    Mannschatz, A., Muller, A. and Moritz, T. (2011). Influence of powder morphology on properties of ceramic injection molding feedstocks. Journal of the European Ceramic Society, 31(14): 2551-2558.

16.    Mahyoedin, Y. (2013). Injection molding process of material composite polypropylene filler graphite and carbon black, in mechanical and material engineering. Universiti Kebangsaan Malaysia: Bangi: pp. 156.

 




Previous                    Content                    Next