Malaysian
Journal of Analytical Sciences Vol 23 No 2 (2019): 355 - 361
DOI:
10.17576/mjas-2019-2302-19
EFFECTS
OF GRAPHITE/POLYPROPYLENE ON THE ELECTRICAL CONDUCTIVITY OF MANUFACTURED
BIPOLAR PLATE
(Kesan Komposit Polimer Pengalir Grafit/Polipropilena
Komposit Polimer Pengalir Ke atas Sifat Kekonduksian Elektrik bagi Pembuatan
Plat Dwikutub)
Iswandi1,2,
Abu Bakar Sulong1, Teuku Husaini1,3*
1Fuel Cell Institute,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
2Department of Mechanical Engineering,
Institut Teknologi Medan, Medan 20152,
Indonesia
3Department of Chemical Engineering,
Universitas Sumatera Utara, USU 20155,
Indonesia
*Corresponding author: t.husaini.st@gmail.com
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Conductive
polymer composite (CPC) has been used on bipolar plates by compression and
injection molding methods. The CPC material comprises 25% polypropylene and
75%graphite with size variation (40, 100, 150, and 200 µm) according to
particle size dispersion test. The composite is mixed using an internal mixer
to obtain a homogeneous mixture at a process temperature of 200 °C. Electrical
conductivity tests are performed on each particle size composition. The highest
electrical conductivity produced by compression and injection molding methods
is 17 and 12 S/cm, respectively. These values are both obtained on a 40 μm
graphite filler. Results show that the type of manufacturing process affects
the value of electrical conductivity using the same material.
Keywords: injection molding, compression molding,
bipolar plate
Abstrak
Komposit polimer pengalir (KPP)
telah digunakan pada plat dwikutub dengan kaedah pengacuan mampatan dan
pengacuan suntikan. Komposisi bahan KPP adalah polipropilena (PP) 25% dan grafit (G) 75%
berat dengan variasi saiz 40 µm, 100 µm, 150
µm dan 200 µm dan dijalankan ujian serakan partikel saiz. Komposit dicampur
menggunakan campuran dalaman untuk mendapatkan campuran yang sekata pada suhu
proses 200 °C. Pengujian kekonduksian elektrik dijalankan pada masing-masing
komposisi saiz partikel. Nilai kekonduksian elektrik tertinggi ditunjukkan pada
pengisi grafit saiz 40 µm, pada masing-masing kaedah pembuatan.
Kekonduksian elektrik tertinggi dihasilkan melalui kaedah pengacuan mampatan
iaitu 17 S/cm dan proses pengacuan suntikan adalah 12 S/cm. Keputusan ujian
menunjukkan bahawa proses pembuatan memberi kesan ke atas nilai kekonduksian
elektrik menggunakan bahan yang sama.
Kata kunci: pengacuan suntikan, pengacuan mampatan, plat
dwikutub
References
1.
Antunes,
R. A., De Oliveira, M. C., Ett, G. and Ett, V. (2011). Carbon materials in
composite bipolar plates for polymer electrolyte membrane fuel cells: A review of
the main challenges to improve electrical performance. Journal of Power Sources, 196(6): 2945-2961.
2.
Hermann,
A., Chaudhuri, T. and Spagnol, P. (2005). Bipolar plates for PEM fuel cells: A
review. International Journal of Hydrogen
Energy, 30(12): 1297-1302.
3.
Hsiao,
M. C., Liao, S. H., Yen, M. Y., Ma, C. C. M., Lee, S. J., Lin, Y. F. and Hung,
C. H. (2009). Electrical and thermal conductivities of novel metal mesh hybrid
polymer composite bipolar plates for proton exchange membrane fuel cells. In
ASME 2009 7th International
Conference on Fuel Cell Science, Engineering and Technology: pp. 871-878.
4.
Clingerman,
M. L., Weber, E. H., King, J. A. and Schulz, K. H. (2002). Synergistic effect
of carbon fillers in electrically conductive nylon 6, 6 and polycarbonate based
resins. Polymer Composites, 23(5):
911-924.
5.
Blunk,
R., Elhamid, M. H. A., Lisi, D. and Mikhail, Y. (2006). Polymeric composite
bipolar plates for vehicle applications. Journal
of Power Sources, 156(2): 151-157.
6.
Heinzel,
A., Mahlendorf, F., Niemzig, O. and Kreuz, C. (2004). Injection moulded low
cost bipolar plates for PEM fuel cells. Journal
of Power Sources, 131(1-2): 35-40.
7.
Taherian,
R. (2014). A review of composite and metallic bipolar plates in proton exchange
membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 265: 370-390.
8.
Taherian,
R., Hadianfard, M. J. and Golikand, A. N. (2013). Manufacture of a
polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane
fuel cells. Materials & Design,
49: 242-251.
9.
Robberg,
K. (2003). Handbook of fuel cells-fundamentals, technology and application.
Fuel cell technology and application. Wiley & Sons: New York: pp. 308-314.
10.
German,
R. M. and Bose, A. (1997). Injection molding of metals and ceramics. Princeton,
New Jersey: Metal Powder Industries Federation.
11.
Mighri,
F., Huneault, M. A. and Champagne, M. F. (2004). Electrically conductive
thermoplastic blends for injection and compression molding of bipolar plates in
the fuel cell application. Polymer Engineering
& Science, 44(9): 1755-1765.
12.
Pozio,
A., Zaza, F., Masci, A. and Silva, R. F. (2008). Bipolar plate materials for
PEMFCs: A conductivity and stability study. Journal
of Power Sources, 179(2): 631-639.
13.
Iswandi,
S., J., Sulong, A. B. and Husaini, T.
(2016). Critical powder loading and rheological properties of
polypropylene/graphite composite feedstock for bipolar plate application. Malaysian Journal of Analytical Sciences,
20(3): 687-696.
14.
Zhang, J., Zou, Y. and He, J. (2005). Influence of graphite
particle size and its shape on performance
of carbon composite bipolar plate. Journal
of Zhejiang University Science, 6(10): 1080-1083.
15.
Mannschatz, A., Muller, A. and Moritz, T. (2011). Influence of
powder morphology on properties of ceramic injection molding feedstocks. Journal of the European Ceramic Society,
31(14): 2551-2558.
16.
Mahyoedin, Y. (2013). Injection molding process of material
composite polypropylene filler graphite and carbon black, in mechanical and
material engineering. Universiti Kebangsaan Malaysia: Bangi: pp. 156.