Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 182 - 188

DOI: 10.17576/mjas-2019-2302-01

 

 

 

DETERMINATION OF BINDING CONSTANT OF MOLECULAR COMPLEX BETWEEN β-CYCLODEXTRIN AND BISPHENOL A BY USING 1H NMR SPECTROSCOPY

 

(Penentuan Malar Penambatan Kompleks Molekul di antara β-siklodekstrin dan Bisfenol A Menggunakan Spektroskopi 1H NMR)

 

Rosliana Rusli, Mohd Bakri Bakar*, Salasiah Endud, Zainab Ramli

 

Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  bakribakar@utm.my

 

 

Received: 4 July 2018; Accepted: 24 January 2019

 

 

Abstract

The inclusion complexation behaviour of bisphenol A (BPA) into hydrophobic cavity of β-cyclodextrin (β-CD) was investigated by using 1H NMR spectroscopy in deuterium oxide by varying the molar ratios between β-CD and BPA from 1:0 to 1:2. The ideal molar ratio for the β-CD:BPA complex was determined as 1:1. In addition, the inclusion of BPA into β-CD produced significant changes in the chemical shifts of H5 and H3 protons, which were located inside the cavity of cyclodextrin. On the other hand, the H2, H4 and H6 protons that were located at the exterior surface of β-CD did not result in any significant changes in the chemical shift, and thus confirmed the formation of the β-CD:BPA inclusion complex. The observed chemical shifts of H5 and H3 protons, when BPA interacted with the β-CD cavity, were utilised to determine the binding association constant  (Ka) and maximum chemical shift difference (∆max). From the nonlinear calculation, the Ka for H3 proton, i.e. 4.10 x 103 M-1, was shown to be stronger than that of H5, i.e. 3.62 x 103 M-1. However, the H5 proton gave a higher ∆max than the H3 proton, which were 0.1412 ppm and 0.0573 ppm, respectively.

 

Keywords:  cyclodextrin, bisphenol A, binding association constant

 

Abstrak

Kelakuan pengkompleksan rangkuman oleh bisfenol A (BPA) ke dalam rongga hidrofobik β-siklodekstrin (β-CD) diselidik melalui penggunaan spektroskopi 1H NMR dalam deuterium oksida dengan mengubah nisbah molar antara β-CD dan BPA dari 1:0 hingga 1:2. Nisbah molar yang unggul untuk kompleks β-CD:BPA ditentukan sebagai 1:1. Tambahan pula, rangkuman BPA ke dalam β-CD menyebabkan perubahan ketara terhadap anjakan kimia pada proton H5 dan H3 siklodekstrin yang terletak di dalam rongga. Selain itu, proton H2, H4 dan H6 yang terletak di luar permukaan β-CD tidak mengalami perubahan pada anjakan kimia, dengan ini membuktikan bahawa pembentukan kompleks rangkuman β-CD:BPA. Perubahan anjakan kimia yang diperhatikan daripada proton H5 and H3 apabila BPA saling bertindak dengan rongga β-CD, digunakan untuk menentukan malar penyekutuan penambatan (Ka) dan perubahan anjakan kimia maksimum (∆max). Menggunakan hitungan tak-linear, malar Ka untuk proton H3 ialah 4.10 x 103 M-1 dilihat lebih kuat berbanding dengan proton H5, iaitu 3.62 x 103      M-1. Walau bagaimanapun, proton H5 memberikan ∆max yang ketara, iaitu 0.1412 ppm berbanding dengan proton H3, iaitu 0.0573 ppm.

 

Kata kunci:  siklodekstrin, bisfenol A, pemalar penyekutuan penambatan

 

References

1.       Bittner, G., D. (2014). Chemicals having estrogenic activity can be released from some bisphenol A-free, hard and clear, thermoplastic resins. Environmental Health, 13: 103 – 120.

2.       Jansssen, S. (2005). Brominated flame retardants: Rising levels of concern. health care without harm (HCWH), Arlington, VA, USA: pp. 10 - 11.

3.       De Wit, C., A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46: 583 – 624.

4.       Eljarrat, E. and Barcelo, D. (2011). Brominated flame retardants. The handbook of environmental chemistry, Springer, Springer-Verlag Berlin Heidelberg, New York. 16: pp. 19 – 53. 

5.       Yang, Z.-X.,  Chen, Y. and Liu, Y. (2008).  Inclusion  complexes of bisphenol  A  with  cyclomaltoheptaose  (β-Cyclodextrin): Solubilization and structure. Carbohydrate Research, 343: 2439 – 2442.

6.       Yu, X., Chen, Y., Chang, L., Zhou, L., Tang, F. and Wu, X. (2013). β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sensor and Actuators B, 186: 648 – 656.

7.       Zhou, Y., Gu, X., Zhang, R. and Lu, J. (2015). Influences of various cyclodextrin on the photodegradation of phenol and bisphenol A under UV light. Industrial & Engineering Chemistry Research, 54: 426 – 433.

8.       Wang, G., Wu, F., Zhang, X., Luo, M. and Deng, N. (2006). Enhanced photodegradation of Bisphenol A in the presence of β-cyclodextrin under UV light. Journal of Chemical Technology and Biotechnology, 8: 805 – 811.

9.       Kono, H. and Nakamura, T. (2013). Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. Reactive & Functional Polymers, 73: 1096 – 1102.

10.    Aoki, N., Arai, R. and Hattori, K. (2004). Improved synthesis of chitosan-bearing β-cyclodextrin and its adsorption behavior towards bisphenol A and 4-nonylphenol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 50: 115 – 120.

11.    Araki, M., Kawasaki, N., Nakamura, T. and Tanada, S. (2001). Removal of bisphenol A in soil by cyclodextrin derivatives. Toxicological and Environmental Chemistry, 79: 23 – 29.

12.    Del Valle, E. M. M. (2004). Cyclodextrin and their uses: A review. Process Biochemistry, 39: 1033 – 1046.

13.    Ezawa, T., Inoue, Y., Tunvichien, S., Suzuki, R. and Kanamoto, I. (2016). Changes in the physicochemical properties of piperine/β-cyclodextrin due to the formation of inclusion complexes. International Journal of Medicinal Chemistry, 2016: 1 – 9. 

14.    Shaikh, H., Sener, G., Memon, N., Bhanger, M., I., Nizamani, S.,M., Uzek, R. and Denizli, A. (2015). Molecularly imprinting surface plasmon resonance (SPR) based sensing of bisphenol a for its selective detection in aqueous systems. Analytical Methods, 7: 4661 – 4670.

15.    Gao, Y., Cao, Y., Yang, D., Luo, X., Tang, Y. and Li, H. (2012). Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. Journal of Hazardous Materials, 199 – 200: 111 – 118.

16.    Jo, M., Ahn, J.-Y., Lee, J., Lee, S., Hong, S., W., Yoo, J.-W., Kang, J., Dua, P., Lee, D.-K., Hong, S. and Kim, S. (2011). Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides, 21(2): 85 – 91.

17.    Sjetli, J. (1988). Cyclodextrin technology. Topics in inclusion science. Kluwer Academic Publisher, Netherlands: pp. 85.

18.    Miller, L. A., Carrier, R. L. and Ahmed, I. (2007). Practical consideration in development of solid dosage forms that contain cyclodextrin. Journal of Pharmaceutical Sciences, 96(7): 1691 – 1707.

19.    Thodarson, P. (2011). Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews, 40: 1305 – 1323.

20.    Chelli, S., Majdoub, M., Jouini, M., Aeiyach, S., Maurel, F., Chane-Ching, K., I. and Lacaze, P.-C. (2007). Host-guest complexes of phenol derivatives with β-cyclodextrin: An experimental and theoretical investigation. Journal of Physical Organic Chemistry, 20: 30 – 43.

21.    Kitano, H., Endo, H., Gemmei-Ide, M. and Kyogoku, M. (2003). Inclusion of bisphenols by cyclodextrin derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 47: 83 – 90.

 




Previous                    Content                    Next