Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 182 - 188
DOI:
10.17576/mjas-2019-2302-01
DETERMINATION OF BINDING
CONSTANT OF MOLECULAR COMPLEX BETWEEN β-CYCLODEXTRIN AND BISPHENOL A BY USING 1H
NMR SPECTROSCOPY
(Penentuan Malar Penambatan Kompleks Molekul di antara β-siklodekstrin dan
Bisfenol A Menggunakan Spektroskopi 1H
NMR)
Rosliana Rusli, Mohd Bakri Bakar*, Salasiah Endud, Zainab
Ramli
Department of Chemistry, Faculty of Science,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: bakribakar@utm.my
Received: 4
July 2018; Accepted: 24 January 2019
Abstract
The inclusion complexation behaviour of bisphenol A (BPA) into
hydrophobic cavity of β-cyclodextrin (β-CD) was investigated by using 1H
NMR spectroscopy in deuterium oxide by varying the molar ratios between β-CD
and BPA from 1:0 to 1:2. The ideal molar ratio for the β-CD:BPA complex was
determined as 1:1. In addition, the inclusion of BPA into β-CD produced
significant changes in the chemical shifts of H5 and H3 protons, which were
located inside the cavity of cyclodextrin. On the other hand, the H2, H4 and H6
protons that were located at the exterior surface of β-CD did not result in any
significant changes in the chemical shift, and thus confirmed the formation of
the β-CD:BPA inclusion complex. The observed chemical shifts of H5 and H3
protons, when BPA interacted with the β-CD cavity, were utilised to determine
the binding association constant (Ka) and maximum chemical
shift difference (∆max). From the nonlinear calculation, the Ka for H3 proton, i.e. 4.10 x
103 M-1, was shown to be stronger than that of H5, i.e.
3.62 x 103 M-1. However, the H5 proton gave a higher ∆max
than the H3 proton, which were 0.1412 ppm and 0.0573 ppm, respectively.
Keywords: cyclodextrin,
bisphenol A, binding association constant
Abstrak
Kelakuan
pengkompleksan rangkuman oleh bisfenol A (BPA) ke dalam rongga hidrofobik β-siklodekstrin
(β-CD) diselidik melalui penggunaan spektroskopi 1H NMR dalam
deuterium oksida dengan mengubah nisbah molar antara β-CD dan BPA dari 1:0
hingga 1:2. Nisbah molar yang unggul untuk kompleks β-CD:BPA ditentukan sebagai
1:1. Tambahan pula, rangkuman BPA ke dalam β-CD menyebabkan perubahan ketara
terhadap anjakan kimia pada proton H5 dan H3 siklodekstrin yang terletak di
dalam rongga. Selain itu, proton H2, H4 dan H6 yang terletak di luar permukaan
β-CD tidak mengalami perubahan pada anjakan kimia, dengan ini membuktikan bahawa
pembentukan kompleks rangkuman β-CD:BPA. Perubahan anjakan kimia yang diperhatikan
daripada proton H5 and H3 apabila BPA saling bertindak dengan rongga β-CD,
digunakan untuk menentukan malar penyekutuan penambatan (Ka) dan
perubahan anjakan kimia maksimum (∆max). Menggunakan hitungan
tak-linear, malar Ka untuk
proton H3 ialah 4.10 x 103 M-1 dilihat lebih kuat
berbanding dengan proton H5, iaitu 3.62 x 103 M-1. Walau bagaimanapun, proton
H5 memberikan ∆max yang ketara, iaitu 0.1412 ppm berbanding dengan proton
H3, iaitu 0.0573 ppm.
Kata kunci: siklodekstrin, bisfenol A, pemalar penyekutuan penambatan
References
1.
Bittner, G., D. (2014).
Chemicals having estrogenic activity can be released from some bisphenol A-free,
hard and clear, thermoplastic resins. Environmental
Health, 13: 103 – 120.
2.
Jansssen, S.
(2005). Brominated flame retardants: Rising levels of concern. health care
without harm (HCWH), Arlington, VA, USA: pp. 10 - 11.
3.
De Wit, C., A.
(2002). An overview of brominated flame retardants in the environment. Chemosphere, 46: 583 – 624.
4.
Eljarrat, E. and
Barcelo, D. (2011). Brominated flame retardants. The handbook of environmental
chemistry, Springer, Springer-Verlag Berlin Heidelberg, New York. 16: pp. 19 –
53.
5.
Yang, Z.-X., Chen, Y. and Liu, Y. (2008). Inclusion complexes of bisphenol A with cyclomaltoheptaose (β-Cyclodextrin): Solubilization and
structure. Carbohydrate Research,
343: 2439 – 2442.
6.
Yu, X., Chen,
Y., Chang, L., Zhou, L., Tang, F. and Wu, X. (2013). β-cyclodextrin non-covalently
modified ionic liquid-based carbon paste electrode as a novel voltammetric
sensor for specific detection of bisphenol A. Sensor and Actuators B, 186: 648 – 656.
7.
Zhou, Y., Gu,
X., Zhang, R. and Lu, J. (2015). Influences of various cyclodextrin on the
photodegradation of phenol and bisphenol A under UV light. Industrial & Engineering Chemistry Research, 54: 426 – 433.
8.
Wang, G., Wu,
F., Zhang, X., Luo, M. and Deng, N. (2006). Enhanced photodegradation of Bisphenol
A in the presence of β-cyclodextrin under UV light. Journal of Chemical Technology and Biotechnology, 8: 805 – 811.
9.
Kono, H. and
Nakamura, T. (2013). Polymerization of β-cyclodextrin with
1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural
characterization, and bisphenol A adsorption capacity. Reactive & Functional Polymers, 73: 1096 – 1102.
10.
Aoki, N., Arai,
R. and Hattori, K. (2004). Improved synthesis of chitosan-bearing β-cyclodextrin
and its adsorption behavior towards bisphenol A and 4-nonylphenol. Journal of Inclusion Phenomena and
Macrocyclic Chemistry, 50: 115 – 120.
11.
Araki, M.,
Kawasaki, N., Nakamura, T. and Tanada, S. (2001). Removal of bisphenol A in
soil by cyclodextrin derivatives. Toxicological
and Environmental Chemistry, 79: 23 – 29.
12.
Del Valle, E. M.
M. (2004). Cyclodextrin and their uses: A review. Process Biochemistry, 39: 1033 – 1046.
13.
Ezawa, T.,
Inoue, Y., Tunvichien, S., Suzuki, R. and Kanamoto, I. (2016). Changes in the
physicochemical properties of piperine/β-cyclodextrin due to the formation of
inclusion complexes. International
Journal of Medicinal Chemistry, 2016: 1 – 9.
14.
Shaikh, H., Sener,
G., Memon, N., Bhanger, M., I., Nizamani, S.,M., Uzek, R. and Denizli, A.
(2015). Molecularly imprinting surface plasmon resonance (SPR) based sensing of
bisphenol a for its selective detection in aqueous systems. Analytical Methods, 7: 4661 – 4670.
15.
Gao, Y., Cao,
Y., Yang, D., Luo, X., Tang, Y. and Li, H. (2012). Sensitivity and selectivity
determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon
electrode. Journal of Hazardous Materials,
199 – 200: 111 – 118.
16.
Jo, M., Ahn,
J.-Y., Lee, J., Lee, S., Hong, S., W., Yoo, J.-W., Kang, J., Dua, P., Lee,
D.-K., Hong, S. and Kim, S. (2011). Development of single-stranded DNA aptamers
for specific bisphenol A detection. Oligonucleotides,
21(2): 85 – 91.
17.
Sjetli, J.
(1988). Cyclodextrin technology. Topics in inclusion science. Kluwer Academic
Publisher, Netherlands: pp. 85.
18.
Miller, L. A.,
Carrier, R. L. and Ahmed, I. (2007). Practical consideration in development of
solid dosage forms that contain cyclodextrin. Journal of Pharmaceutical Sciences, 96(7): 1691 – 1707.
19.
Thodarson, P.
(2011). Determining association constants from titration experiments in
supramolecular chemistry. Chemical
Society Reviews, 40: 1305 – 1323.
20.
Chelli, S.,
Majdoub, M., Jouini, M., Aeiyach, S., Maurel, F., Chane-Ching, K., I. and
Lacaze, P.-C. (2007). Host-guest complexes of phenol derivatives with β-cyclodextrin:
An experimental and theoretical investigation. Journal of Physical Organic Chemistry, 20: 30 – 43.
21.
Kitano, H.,
Endo, H., Gemmei-Ide, M. and Kyogoku, M. (2003). Inclusion of bisphenols by
cyclodextrin derivatives. Journal of
Inclusion Phenomena and Macrocyclic Chemistry, 47: 83 – 90.