Malaysian Journal of Analytical Sciences Vol 23 No 2 (2019): 345 - 354

DOI: 10.17576/mjas-2019-2302-18

 

 

 

LASER-ASSISTED SILICON ETCHING FOR MICRO FUEL CELL ELECTRODE PLATE FABRICATION

 

(Fabrikasi Plat Elektrod Sel Bahan Api Mikro dengan Punaran Silikon Terbantu Laser)

 

Umi Azmah Hasran1*, Siti Kartom Kamarudin1,3, Burhanuddin Yeop Majlis2, Wan Ramli Wan Daud3, Abdul Amir Hassan Kadhum3, Gandi Sugandi4

 

1Fuel Cell Institute

2Institute of Microengineering and Nanoelectronics

3Department of Chemical and Process Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Research Center for Electronics and Telecommunication

Lembaga Ilmu Pengetahuan Indonesia, Bandung, Indonesia

 

*Corresponding author:  umi.h@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Silicon electrode plates for micro fuel cells were obtained using a microfabrication process based on the micro-electro-mechanical system (MEMS) technology. The dry etching process involved the laser ablation technique using the highly stable Nd:YAG. This technique is suitable for micromachining silicon substrates. The total size of the electrode plate was 2.5 cm x 2.5 cm and the active reaction area was 1 cm2. An increase in laser scan numbers deepened the groove being etched on the silicon sample, but it showed a saturated behavior as the number of scans became higher. The time required to etch a complete electrode plate flow field with 14 square-shaped through-holes of 0.185 cm x 0.185 cm area using laser ablation was ~30 minutes, which was much shorter than the wet etching time of more than 10 hours with the potassium hydroxide solution (KOH) solution. The laser-etched flow field achieved vertical sidewalls as per the original design, whereas the wet-etched structure achieved a typical anisotropic hole structure with sidewalls that were approximately 54º to the electrode surface due to the <100> orientation of the silicon wafer. Therefore, the laser ablation technique was chosen to produce the electrode plates for the micro fuel cell as it can save time on the etching process and produce more precise flow field dimensions for the electrode plates with less process steps compared with the conventional wet etching processes using KOH solution.

 

Keywords:  flow field design, MEMS technology, bulk micromachining, dry etching technique, laser ablation

 

Abstrak

Plat silikon untuk sel ahan api mikro dihasilkan menggunakan proses mikrofabrikasi yang berasaskan teknologi sistem mikro-elektro-mekanikal (MEMS) dengan proses punaran kering menggunakan teknik ablasi laser. Jenis laser yang digunakan untuk kerja punaran kering ini adalah Nd:YAG berkestabilan tinggi yang sesuai untuk pemesinan mikro bagi substrat silikon. Saiz keseluruhan plat elektrod yang dihasilkan adalah 2.5 cm x 2.5 cm, manakala kawasan aktif tindakbalas adalah 1 cm2. Peningkatan bilangan imbasan menjadikan kawasan terablasi pada sampel lebih dalam tetapi punaran menjadi semakin tepu apabila bilangan imbasan semakin meningkat tinggi. Masa untuk memunar habis medan aliran plat elektrod yang mempunyai 14 lubang tembus berbentuk segi empat sama dengan keluasan 0.185 cm x 0.185 cm dengan menggunakan laser hanyalah kira-kira 30 minit, berbanding dengan proses punaran basah menggunakan kalium hidroksida (KOH) yang memakan masa lebih 10 jam. Proses yang lama ini juga memerlukan lapisan SiO2 yang lebih tebal sebagai pelindung silikon semasa proses punaran dijalankan. Malah, punaran basah KOH ke atas wafer silikon dengan orientasi <100> memberi ciri lubang dengan dinding yang bersisi sendeng pada sudut ~ 54º dari permukaan plat dan mengakibatkan bukaan lubang mempunyai saiz yang lebih kecil daripada rekabentuk asal. Oleh itu, teknik ablasi laser dipilih untuk menghasilkan plat elektrod bagi mikro sel fuel kerana ia dapat menjimatkan masa mikrofabrikasi dan menghasilkan dimensi medan aliran untuk plat elektrod yang lebih tepat dengan langkah aliran proses mikrofabrikasi yang kurang berbanding dengan proses punaran basah menggunakan larutan KOH.

 

Kata kunci:    rekabentuk medan aliran, teknologi MEMS, pemesinan mikro pukal, proses punaran kering, teknik ablasi laser

 

References

1.          O'Neill, W. and Li, K. (2009). High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 15(2): 462 – 470.

2.          Gerteisen, D. (2010). Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells. Journal of Power Sources, 195(19): 6719 – 6731.

3.          Manahan, M. P., Hatzell, M. C., Kumbur, E. C. and Mench, M. M. (2011). Laser perforated fuel cell diffusion media. Part I: Related changes in performance and water content. Journal of Power Sources, 196(13): 5573 – 5582.  

4.          Whitacre, J. F., Murphy, R. D., Marrie, A. and Yalisove, S. M. (2009). Enhanced catalyst utilization in PEM fuel cells via ultrafast laser modification of the polymer exchange membrane surface. Electrochemistry Communications, 11(3): 655 – 659.  

5.          Bourell, D. L., Leu, M. C., Chakravarthy, K., Guo, N. and Alayavalli, K. (2011). Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Annals - Manufacturing Technology, 60(1): 275 – 278.

6.          Guo, N. and Leu, M. C. (2012). Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy, 37(4): 3558 – 3566.

7.          Petersen, K. E. (1982). Silicon as a mechanical material. Proceedings IEEE, 70(5): 420 – 457.

8.          Long, Y., Xiong, L., Shil, T. and Tang, Z. (2007). Study of excimer laser electrochemical etching silicon. The 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand.

9.          Trusheim, D., Schulz-Ruhtenberg, M., Baier, T., Krantz, S., Bauer, D. and Das, J. (2011). Investigation of the influence of pulse duration in laser processes for solar cells. Physics Procedia, 12, Part B: 278 –285.

10.        Allard, M., Boughaba, S. and Meunier, M. (1997). Laser micromachining of free-standing structures in SiO2-covered silicon. Applied Surface Science, 109–110(0): 189 – 193.

11.        Chung, C. K., Wu, M. Y., Wu, J. C., Sung, Y. C. and Huang, G. R. (2006). Silicon micromachining by CO2 laser. The 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China.

12.        Chung, C. K., Wu, M. Y., Hsiao, E. J. and Sung, Y. C. (2007). Etching behavior of silicon using CO2 laser. The 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand

13.        Alavi, M., Büttgenbach, S., Schumacher, A. and Wagner, H. J. (1991). Laser machining of silicon for fabrication of new microstructures. Proceedings IEEE Transducers’91: 512 – 515.

14.        Minami, K., Wakabayashi, Y., Matsubara, T., Yoshimi, K., Yoshida, M., and Esashi, M. (1993). YAG laser assisted etching for releasing silicon micro structure. Proceedings IEEE MEMS '93: 53-58.

15.        Lerner, B., Perez, M. S., Toro, C., Lasorsa, C., Rinaldi, C. A., Boselli, A. and Lamagna, A. (2012). Generation of cavities in silicon wafers by laser ablation using silicon nitride as sacrificial layer. Applied Surface Science, 258(7): 2914 – 2919.  

16.        Du, Z., Palina, N., Chen, J., Hong, M. and Hoex, B. (2012). Rear-side contact opening by laser ablation for industrial screen-printed aluminium local back surface field silicon wafer solar cells. Energy Procedia, 25: 19 – 27.  

17.        Koechner, W. (2006). Solid-State Laser Engineering (6 edition). London: Springer Ltd.

18.        Yuan, W. and Ma, B. (2008). Micro-machinability of monocrystal silicon by direct etching using excimer laser. Journal of Materials Processing Technology, 200(1): 390 – 397.  

19.        Mizeikis, V., Juodkazis, S., Ye, J.-Y., Rode, A., Matsuo, S. and Misawa, H. (2003). Silicon surface processing techniques for micro-systems fabrication. Thin Solid Films, 438–439(0): 445 – 451.  

20.        Hasran, U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B. and Kadhum, A. A. H. (2011). A simple thermal oxidation technique and KOH wet etching process for fuel cell flow field fabrication. International Journal of Hydrogen Energy, 36(8): 5136 – 5142.

21.        Ogorodnikov, A. I. (2016). Finite-element simulation of scratching on a coated brittle plate. AIP Conference Proceedings, 1785(1): 030020.

 




Previous                    Content                    Next