Malaysian Journal of Analytical Sciences Vol
23 No 2 (2019): 345 - 354
DOI:
10.17576/mjas-2019-2302-18
LASER-ASSISTED
SILICON ETCHING FOR MICRO FUEL CELL ELECTRODE PLATE FABRICATION
(Fabrikasi Plat Elektrod Sel Bahan Api Mikro dengan
Punaran Silikon Terbantu Laser)
Umi Azmah Hasran1*,
Siti Kartom Kamarudin1,3, Burhanuddin Yeop Majlis2, Wan Ramli
Wan Daud3, Abdul Amir Hassan
Kadhum3, Gandi Sugandi4
1Fuel Cell Institute
2Institute of Microengineering and Nanoelectronics
3Department of Chemical and Process Engineering
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
4Research Center for Electronics and Telecommunication
Lembaga Ilmu Pengetahuan Indonesia, Bandung, Indonesia
*Corresponding author: umi.h@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Silicon electrode plates for micro fuel cells
were obtained using a microfabrication process based on the
micro-electro-mechanical system (MEMS) technology. The dry etching process
involved the laser ablation technique using the highly stable Nd:YAG. This technique
is suitable for micromachining silicon substrates. The total size of the
electrode plate was 2.5 cm x 2.5 cm and the active reaction area was 1 cm2.
An increase in laser scan numbers deepened the groove being etched on the
silicon sample, but it showed a saturated behavior as the number of scans
became higher. The time required to etch a complete electrode plate flow field
with 14 square-shaped through-holes of 0.185 cm x 0.185 cm area using laser
ablation was ~30 minutes, which was much shorter than the wet etching time of
more than 10 hours with the potassium hydroxide solution (KOH) solution. The
laser-etched flow field achieved vertical sidewalls as per the original design,
whereas the wet-etched structure achieved a typical anisotropic hole structure
with sidewalls that were approximately 54º to the electrode surface due to the
<100> orientation of the silicon wafer. Therefore, the laser ablation
technique was chosen to produce the electrode plates for the micro fuel cell as
it can save time on the etching process and produce more precise flow field
dimensions for the electrode plates with less process steps compared with the
conventional wet etching processes using KOH solution.
Keywords: flow field design, MEMS technology, bulk
micromachining, dry etching technique, laser ablation
Abstrak
Plat silikon untuk sel ahan api mikro dihasilkan menggunakan proses
mikrofabrikasi yang berasaskan teknologi sistem mikro-elektro-mekanikal (MEMS)
dengan proses punaran kering menggunakan teknik ablasi laser. Jenis laser yang
digunakan untuk kerja punaran kering ini adalah Nd:YAG berkestabilan tinggi
yang sesuai untuk pemesinan mikro bagi substrat silikon. Saiz keseluruhan plat
elektrod yang dihasilkan adalah 2.5 cm x 2.5 cm, manakala kawasan aktif tindakbalas
adalah 1 cm2. Peningkatan bilangan imbasan menjadikan kawasan
terablasi pada sampel lebih dalam tetapi punaran menjadi semakin tepu apabila
bilangan imbasan semakin meningkat tinggi. Masa untuk memunar habis medan
aliran plat elektrod yang mempunyai 14 lubang tembus berbentuk segi empat sama
dengan keluasan 0.185 cm x 0.185 cm dengan menggunakan laser hanyalah kira-kira
30 minit, berbanding dengan proses punaran basah menggunakan kalium hidroksida
(KOH) yang memakan masa lebih 10 jam. Proses yang lama ini juga memerlukan
lapisan SiO2 yang lebih tebal sebagai pelindung silikon semasa
proses punaran dijalankan. Malah, punaran basah KOH ke atas wafer silikon
dengan orientasi <100> memberi ciri lubang dengan dinding yang bersisi
sendeng pada sudut ~ 54º dari permukaan plat dan mengakibatkan bukaan lubang
mempunyai saiz yang lebih kecil daripada rekabentuk asal. Oleh itu, teknik
ablasi laser dipilih untuk menghasilkan plat elektrod bagi mikro sel fuel
kerana ia dapat menjimatkan masa mikrofabrikasi dan menghasilkan dimensi medan
aliran untuk plat elektrod yang lebih tepat dengan langkah aliran proses
mikrofabrikasi yang kurang berbanding dengan proses punaran basah menggunakan
larutan KOH.
Kata kunci: rekabentuk medan aliran,
teknologi MEMS, pemesinan mikro pukal, proses punaran kering, teknik ablasi
laser
References
1.
O'Neill,
W. and Li, K. (2009). High-quality micromachining of silicon at 1064 nm using a
high-brightness MOPA-based 20-W Yb fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 15(2): 462
– 470.
2.
Gerteisen,
D. (2010). Transient and steady-state analysis of catalyst poisoning and mixed
potential formation in direct methanol fuel cells. Journal of Power Sources, 195(19): 6719 – 6731.
3.
Manahan,
M. P., Hatzell, M. C., Kumbur, E. C. and Mench, M. M. (2011). Laser perforated
fuel cell diffusion media. Part I: Related changes in performance and water
content. Journal of Power Sources, 196(13):
5573 – 5582.
4.
Whitacre,
J. F., Murphy, R. D., Marrie, A. and Yalisove, S. M. (2009). Enhanced catalyst
utilization in PEM fuel cells via ultrafast laser modification of the polymer
exchange membrane surface. Electrochemistry
Communications, 11(3): 655 – 659.
5.
Bourell,
D. L., Leu, M. C., Chakravarthy, K., Guo, N. and Alayavalli, K. (2011).
Graphite-based indirect laser sintered fuel cell bipolar plates containing
carbon fiber additions. CIRP Annals -
Manufacturing Technology, 60(1): 275 – 278.
6.
Guo,
N. and Leu, M. C. (2012). Effect of different graphite materials on the
electrical conductivity and flexural strength of bipolar plates fabricated
using selective laser sintering. International
Journal of Hydrogen Energy, 37(4): 3558 – 3566.
7.
Petersen,
K. E. (1982). Silicon as a mechanical material. Proceedings IEEE, 70(5): 420 – 457.
8.
Long,
Y., Xiong, L., Shil, T. and Tang, Z. (2007). Study of excimer laser
electrochemical etching silicon. The 2nd IEEE International
Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand.
9.
Trusheim,
D., Schulz-Ruhtenberg, M., Baier, T., Krantz, S., Bauer, D. and Das, J. (2011).
Investigation of the influence of pulse duration in laser processes for solar
cells. Physics Procedia, 12, Part B:
278 –285.
10.
Allard,
M., Boughaba, S. and Meunier, M. (1997). Laser micromachining of free-standing
structures in SiO2-covered silicon. Applied Surface Science, 109–110(0): 189 – 193.
11.
Chung,
C. K., Wu, M. Y., Wu, J. C., Sung, Y. C. and Huang, G. R. (2006). Silicon micromachining by CO2
laser. The 1st IEEE International Conference on Nano/Micro
Engineered and Molecular Systems, Zhuhai, China.
12.
Chung,
C. K., Wu, M. Y., Hsiao, E. J. and Sung, Y. C. (2007). Etching behavior of
silicon using CO2 laser. The 2nd IEEE International
Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand
13.
Alavi,
M., Büttgenbach, S., Schumacher, A. and Wagner, H. J. (1991). Laser machining
of silicon for fabrication of new microstructures. Proceedings IEEE Transducers’91: 512 – 515.
14.
Minami,
K., Wakabayashi, Y., Matsubara, T., Yoshimi, K., Yoshida, M., and Esashi, M.
(1993). YAG laser assisted etching for releasing silicon micro structure. Proceedings IEEE MEMS '93: 53-58.
15.
Lerner,
B., Perez, M. S., Toro, C., Lasorsa, C., Rinaldi, C. A., Boselli, A. and
Lamagna, A. (2012). Generation of cavities in silicon wafers by laser ablation
using silicon nitride as sacrificial layer. Applied
Surface Science, 258(7): 2914 – 2919.
16.
Du,
Z., Palina, N., Chen, J., Hong, M. and Hoex, B. (2012). Rear-side contact
opening by laser ablation for industrial screen-printed aluminium local back
surface field silicon wafer solar cells. Energy
Procedia, 25: 19 – 27.
17.
Koechner,
W. (2006). Solid-State Laser Engineering
(6 edition). London: Springer Ltd.
18.
Yuan,
W. and Ma, B. (2008). Micro-machinability of monocrystal silicon by direct
etching using excimer laser. Journal of
Materials Processing Technology, 200(1): 390 – 397.
19.
Mizeikis,
V., Juodkazis, S., Ye, J.-Y., Rode, A., Matsuo, S. and Misawa, H. (2003).
Silicon surface processing techniques for micro-systems fabrication. Thin Solid Films, 438–439(0): 445 – 451.
20.
Hasran,
U. A., Kamarudin, S. K., Daud, W. R. W., Majlis, B. Y., Mohamad, A. B. and
Kadhum, A. A. H. (2011). A simple thermal oxidation technique and KOH wet
etching process for fuel cell flow field fabrication. International Journal of Hydrogen Energy, 36(8): 5136 – 5142.
21.
Ogorodnikov,
A. I. (2016). Finite-element simulation of scratching on a coated brittle
plate. AIP Conference Proceedings, 1785(1):
030020.