Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 633 - 641
DOI:
10.17576/mjas-2018-2204-09
OLEIC ACID
ENHANCEMENT IN USED FRYING PALM OIL VIA ENZYMATIC ACIDOLYSIS
(Peningkatan Kandungan Asid Oleik dalam Minyak Sawit
Terpakai Melalui Kaedah Asidolisis Enzim)
Nor Athirah Zaharudin1, Nurul Syafiqah binti Remzi1,
Roslina Rashid1*, Siti
Marsilawati Mohamed Esivan1, Ani Idris1, Norasikin Othman2
1Bioprocess and
Polymer Engineering Department, School of Chemical and Energy, Faculty of
Engineering
2 Chemical
Engineering Department, School of Chemical and Energy, Faculty of Engineering
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding
author: roslina@cheme.utm.my
Received:
16 April 2017; Accepted: 7 March 2018
Abstract
The extensive amount of used frying palm
oil (UFO) generated in Malaysia has caused serious environmental problems.
Management of the waste faces a significant challenge especially on choosing
the appropriate method by considering the possibilities of contaminating the
environment. This study aims to add
value to UFO by producing high oleic palm oil. Enzymatic acidolysis using
lipase was employed to incorporate oleic acid in the UFO. This study also
investigated the effect of enzymatic loading, reaction time and water content
on the properties of modified UFO as to find the optimum condition for oleic
acid incorporation. Oleic acid incorporation was quantified based on peroxide
and iodine values. The optimum conditions for acidolysis process were obtained
at enzyme loading of 30% (w/w), reaction time of 24 hours, and water content of
2% (w/w) with substrate mole ratio of 1:2 (UFO: oleic acid) and temperature of
50 °C. At optimum conditions, the modified used frying
palm oil (MUFO) has peroxide and iodine values of 19.00 ± 0.99 meq/mg and 31.5
± 0.42 mg/mg, respectively. After the
acidolysis reaction, oleic acid concentration has increased from 27.00 ± 0.70%
(v/v) to 62.34 ± 1.29% (v/v), demonstrating their feasibility as a substrate
for structured lipid production.
Keywords: enzymatic acidolysis, used frying palm oil,
oleic acid, high oleic palm oil, oleic acid incorporation
Abstrak
Lambakan
minyak sawit terpakai (UFO) di Malaysia telah menyebabkan banyak masalah alam
sekitar yang serius. Pengurusan sisa ini menempuh cabaran besar terutamanya
dari espek pemilihan kaedah pelupusan yang mengambil kira
kemungkinan-kemungkinan yang boleh mencemarkan alam sekitar. Kajian ini
bertujuan menambah nilai UFO dengan menghasilkan minyak sawit tinggi asid
oleik. Asidolsis enzimatik menggunakan lipase telah dijalankan untuk
menggabungkan asid oleik ke dalam UFO. Kajian ini juga mengkaji kesan kepekatan
enzim, masa tindak balas dan kandungan air pada sifat-sifat minyak sawit
terubahsuai (MUFO) untuk mencari keadaan optimum peningkatan asid oleik.
Peningkatan asid oleik dinilai berdasarkan nilai peroksida dan nilai iodin.
Keadaan optimum untuk proses asidolisis yang diperoleh adalah pada kepekatan
enzim 30% (w/w), masa tindak balas 24 jam dan kandungan air 2% (w/w) pada nisbah
substrat 1:2 (UFO: asid oleik) serta suhu 50 °C. Pada keadaan optimum MUFO
mempunyai nilai peroksida 19.00 ± 0.99 meq/mg dan nilai iodin 31.5 ± 0.42
mg/mg. Selepas tindak balas asiolisis enzim, kepekatan asid oleik telah
meningkat dari 27.00 ± 0.70% (v/v) kepada 62.34 ± 1.29% (v/v), membuktikan UFO
mampu menjadi substrat untuk penghasilan lipid berstruktur.
Kata kunci: asidolisis enzim, minyak terpakai, asid oleik, minyak sawit tinggi asid
oleik, peningkatan asid oleik
References
1.
Esteban,
L., Jiménez, M. J., Hita, E., González, P. A., Martín, L. and Robles, A.
(2011). Production of structured triacylglycerols rich in palmitic acid at sn-2
position and oleic acid at sn-1,3 positions as human milk fat substitutes by
enzymatic acidolysis. Biochemical
Engineering Journal, 54(1): 62-69.
2.
Nurdin,
S., Yunus, R. M., Nour, A. H., Gimbun, J., Azman, N. A. N. and Sivaguru, M. V.
(2016). Restoration of waste cooking oil (WCO) using alkaline hydrolysis
technique (ALHT) for future biodetergent. ARPN
Journal of Engineering and Applied Sciences, 11: 6405-6410.
3.
Sebayang, D., Agustian, E. and Praptijanto, A. (2010). Transesterification of biodiesel from waste
cooking oil using ultrasonic technique. International Conference on
Environment. 13-15 December. Penang, Malaysia: pp. 1 – 9.
4.
Ferreira-Dias, S., Sandoval, G., Plou, F. and
Valero, F. (2013). The potential use of lipases in the production of fatty acid
derivatives for the food and nutraceutical industries. Journal of
Biotechnology, 16(3): 1-36.
5.
Xu, X. (2000).
Production of specific structured-triacylglycerols by lipase-catalysed
reactions: A review. European Journal of
Lipid Science and Technology, 102(4): 287-303.
6.
Kinney, A. J. and Clemente, T. (2005).
Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Processing Technology, 86(10):
1137-1147.
7.
Corbett, P. (2003). It is time for an oil change: Opportunities for
high-oleic vegetables oils. Inform,
14(8): 480-481.
8.
Arniza,
M. Z., Seng, S. H., Idris, Z., Shoot, K. Y., Abu Hassan, H, Din, A. K. and
Yuen, M. C. (2015). Synthesis of transesterified palm olein-based polyol and
rigid polyurethanes from this polyol. Journal
of American Oil Chemistry Society, 92(2): 243-255.
9.
Ramli,
M. R., Siew W. L., Cheah, K. Y., Idris, N. A. and Mat Sahri, M. (2008).
Physico-chemical properties and performance of high oleic and palm-based
shortenings. Journal of Oleo Science,
57(11): 605-612.
10. Phan, A. N. and Phan, T. M.
(2008). Biodiesel production from waste cooking oils. Fuel, 87: 3490-3496.
11. Rafael, C. R. and Roberto, F. L. (2010). Lipase from Rhizomucor miehei as a biocatalyst in
fats and oils modifications. Journal of
Molecular Catalysis B-Enzymatic, 66(1-2): 15-32.
12. Yigitoglu, M. and Temocin, Z. (2010).
Immobilization of C. rugosa lipase on glutaraldehyde-activated polyester
fiber and its application for hydrolysis of some vegetable oils. Journal of
Molecular Catalysis B: Enzymatic, 66(1-2): 130-135.
13. Zhang, X.,
Niea,K., Zheng, Y., Wang,F., Deng, L. and Tan, T. (2016). Lipase Candida Sp.
99-125Coupled With-Cyclodextrin as Additive Synthesized the Human Milk Fat
Substitutes. Journal of Molecular
Catalysis B: Enzymatic, 125: 1-5.
14. BezbradicA, D.,
Karalazi, I., Ognjanovi, N., Mijin, D., Siler-Marinkovi, S. and Knezevic, Z.
(2006). Studies on specificity of candida rugosa lipase catalyzed
esterification reaction in organic media. Journal of Serbian Chemical
Society, 71(1): 31-41.
15. Przybylski, R.,
Gruczynska, E. and Aladedunye, F. (2013). Performance of regular and modified
canola and soybean oils in rotational frying. Journal of American Oil Chemists’ Society, 90: 1271-1280.
16. Pazouki,
M., Zamani, F., Zamzamian, A. H., Fahar, M. and Najafpour, G. (2010). Esterification of free fatty
acids by Rhizopus oryzae as cell-catalysed from used cooking oil for
biodiesel production. World Applied
Sciences Journal, 8(6): 719-724.
17. Hasnisa, H. and
Jumat, S. (2012). Enzymatic acidolysis of palm olein with PUFA to improve
linoleic and α-linolenic acids ratio. Journal
of Tropical Agriculture and Food Science, 40(1): 71-79.
18. IFRA. (2011).
Analytical Method: Determination of the Peroxide Value. Access online
www.ifraorg.org/view_document.aspx?docId=22291.
19. AOCS. (1989).
Official methods and recommended practices of the American oil chemists’
society. Ca 5a–40, Cd 1b–87 and Cd 8–53.4. Champaign IL, American Oil Chemists’
Society.
20. Zou, X. G., Hu,
J. N., Zhao, M. L., Zhu, X. M., Li, H. Y., Liu, X. R., Liu, R. and Deng, Z. Y.
(2014). Lipozyme RM IM-catalysed acidolysis of cinnamomum camphora seed oil
with oleic acid to produce human milk fat substitutes enriched in medium-chain
fatty acids. Journal of Agricultural and
Food Chemistry, 62(43): 10594-10603.
21. Siew, W. L. and Saw, M. H. (2009). High
oleic enhancement of palm olein via enzymatic interesterification. Journal of Oleo Science, 58(11): 549-555.
22. Senanayake, S.
P. J. and Shahidi, F. (2002). Structured lipids via lipase-catalysed
incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils. Journal
of Agricultural and Food Chemistry, 50(3): 477-483.
23. Karakaya, S. and Simsek, S.
(2011). Changes in total polar compounds, peroxide value, total phenols, and
antioxidant activity of various oils used in deep fat frying. Journal of American Oil Chemists’ Society,
88(9): 1361-1366.
24. Fan, H. Y.,
Sharifudin, M. S., Hasmadi, M. and Chew, H. M. (2013). Frying stability of rice
bran oil and palm olein. International
Food Research Journal, 20(1): 403-407.
25. Talpur, M. Y., Sherazi, S.
T. H., Mahesar, S. A. and Kandhro, A. A. (2009). Effects of chicken frying on
soybean, sunflower, and canola oils. Pakistan
Journal of Analytical and Environmental Chemistry, 10(1-2): 59-66.
26. Kulkarni, M. G.
and Dalai, A. K. (2006). Waste cooking oil-an economical source for biodiesel:
A review. Indian Journal of Chemical Engineering, 45(9): 2901-2913.
27. Cvengros, J. and
Cvengrosova, Z. (2004). Used frying oils and fats and their utilization in the
production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2): 173-181.
28. Aladedunye F. A.
and Przybylski, R. (2009). Protecting oil during frying: A comparative study. European Journal of Lipid Science and
Technology, 111(9): 893-901.
29. Majidi, M. I. H.
A. L and Bader, A. T. (2015). Sciences physicochemical characteristics of some
imported edible vegetable oils in Iraq. Research
Journal of Pharmaceutical, Biological and Chemical, 6(5): 488-494.
30. Kaleem, A.,
Aziz, S., Iqtedar, M., Abdullah, R., Aftab, M., Rashid, F., Shakoori, F. R. and
Naz, S. (2015). Investigating changes and effect of peroxide values in cooking
oils subject to light and heat. FUUAST
Journal of Biology, 5(2): 191-196.
31. Choo, Y. M. and
Nesaretnam, K. (2014). Research advancement in palm oil nutrition. European Journal of Lipid Scientific
Technology, 116(10): 1301-1315.
32. Savaghebi,
D., Safari, M., Rezaei, K., Ashtari, P. and Farmani, J. (2012). Structured
lipids produced through lipase-catalysed acidolysis of canola oil. Journal
of Agricultural Science Technology, 14(6): 1297-1310.
33. Kocak, D.,
Keskin, H., Fadiloglu, S., Kowalski, B. and Gogus, F. (2011). Characterization
of terebinth fruit oil and optimization of acidolysis reaction with caprylic
and stearic acids. Journal of American
Oil Chemists’ Society, 88(10): 1531-1538.
34. Zhao, H., Lu,
Z., Bie, X., Lu, F. and Liu, Z. (2007). Lipase catalysed acidolysis of lard
with capric acid in organic solvent. Journal
of Food Engineering, 78(1): 41-46.
35. Hamam, F. and
Shahidi, F. (2004). Enzymatic acidolysis of an arachidonic acid single-cell oil
with capric acid. Journal of the American
Oil Chemists' Society, 81(9): 887-892.
36.
Çiftçi, O.N.,
Fadiloǧlu, S., Kowalski, B. and Göǧüş, F. (2008). Synthesis of cocoa butter
triacylglycerols using a model acidolysis system. Grasas y Aceites,
59(4): 316-320.
37. Páez, B. C.,
Medina, A. R., Rubio, F. C., Morenoa, P. G. and Grima, E. M. (2003). Modelling
the effect of free water on enzyme activity in immobilized lipase-catalysed
reactions in organic solvents. Enzyme and
Microbial Technology, 33(6): 845-853.