Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 633 - 641

DOI: 10.17576/mjas-2018-2204-09

 

 

 

OLEIC ACID ENHANCEMENT IN USED FRYING PALM OIL VIA ENZYMATIC ACIDOLYSIS

 

(Peningkatan Kandungan Asid Oleik dalam Minyak Sawit Terpakai Melalui Kaedah Asidolisis Enzim)

 

Nor Athirah Zaharudin1, Nurul Syafiqah binti Remzi1, Roslina Rashid1*, Siti Marsilawati Mohamed Esivan1, Ani Idris1, Norasikin Othman2

 

1Bioprocess and Polymer Engineering Department, School of Chemical and Energy, Faculty of Engineering

2 Chemical Engineering Department, School of Chemical and Energy, Faculty of Engineering

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author:  roslina@cheme.utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

The extensive amount of used frying palm oil (UFO) generated in Malaysia has caused serious environmental problems. Management of the waste faces a significant challenge especially on choosing the appropriate method by considering the possibilities of contaminating the environment.  This study aims to add value to UFO by producing high oleic palm oil. Enzymatic acidolysis using lipase was employed to incorporate oleic acid in the UFO. This study also investigated the effect of enzymatic loading, reaction time and water content on the properties of modified UFO as to find the optimum condition for oleic acid incorporation. Oleic acid incorporation was quantified based on peroxide and iodine values. The optimum conditions for acidolysis process were obtained at enzyme loading of 30% (w/w), reaction time of 24 hours, and water content of 2% (w/w) with substrate mole ratio of 1:2 (UFO: oleic acid) and temperature of 50 °C. At optimum conditions, the modified used frying palm oil (MUFO) has peroxide and iodine values of 19.00 ± 0.99 meq/mg and 31.5 ± 0.42 mg/mg, respectively. After the acidolysis reaction, oleic acid concentration has increased from 27.00 ± 0.70% (v/v) to 62.34 ± 1.29% (v/v), demonstrating their feasibility as a substrate for structured lipid production.

 

Keywords:  enzymatic acidolysis, used frying palm oil, oleic acid, high oleic palm oil, oleic acid incorporation

 

Abstrak

Lambakan minyak sawit terpakai (UFO) di Malaysia telah menyebabkan banyak masalah alam sekitar yang serius. Pengurusan sisa ini menempuh cabaran besar terutamanya dari espek pemilihan kaedah pelupusan yang mengambil kira kemungkinan-kemungkinan yang boleh mencemarkan alam sekitar. Kajian ini bertujuan menambah nilai UFO dengan menghasilkan minyak sawit tinggi asid oleik. Asidolsis enzimatik menggunakan lipase telah dijalankan untuk menggabungkan asid oleik ke dalam UFO. Kajian ini juga mengkaji kesan kepekatan enzim, masa tindak balas dan kandungan air pada sifat-sifat minyak sawit terubahsuai (MUFO) untuk mencari keadaan optimum peningkatan asid oleik. Peningkatan asid oleik dinilai berdasarkan nilai peroksida dan nilai iodin. Keadaan optimum untuk proses asidolisis yang diperoleh adalah pada kepekatan enzim 30% (w/w), masa tindak balas 24 jam dan kandungan air 2% (w/w) pada nisbah substrat 1:2 (UFO: asid oleik) serta suhu 50 °C. Pada keadaan optimum MUFO mempunyai nilai peroksida 19.00 ± 0.99 meq/mg dan nilai iodin 31.5 ± 0.42 mg/mg. Selepas tindak balas asiolisis enzim, kepekatan asid oleik telah meningkat dari 27.00 ± 0.70% (v/v) kepada 62.34 ± 1.29% (v/v), membuktikan UFO mampu menjadi substrat untuk penghasilan lipid berstruktur.

 

Kata kunci:   asidolisis enzim, minyak terpakai, asid oleik, minyak sawit tinggi asid oleik, peningkatan asid oleik

 

References

1.        Esteban, L., Jiménez, M. J., Hita, E., González, P. A., Martín, L. and Robles, A. (2011). Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochemical Engineering Journal, 54(1): 62-69.

2.        Nurdin, S., Yunus, R. M., Nour, A. H., Gimbun, J., Azman, N. A. N. and Sivaguru, M. V. (2016). Restoration of waste cooking oil (WCO) using alkaline hydrolysis technique (ALHT) for future biodetergent. ARPN Journal of Engineering and Applied Sciences, 11: 6405-6410.

3.        Sebayang, D., Agustian, E. and Praptijanto, A. (2010). Transesterification of biodiesel from waste cooking oil using ultrasonic technique. International Conference on Environment.  13-15 December.  Penang, Malaysia: pp. 1 – 9.

4.        Ferreira-Dias, S., Sandoval, G., Plou, F. and Valero, F. (2013). The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Journal of Biotechnology, 16(3): 1-36.

5.        Xu, X. (2000). Production of specific structured-triacylglycerols by lipase-catalysed reactions: A review. European Journal of Lipid Science and Technology, 102(4): 287-303.

6.        Kinney, A. J. and Clemente, T. (2005).  Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Processing Technology, 86(10): 1137-1147.

7.        Corbett, P. (2003). It is time for an oil change: Opportunities for high-oleic vegetables oils. Inform, 14(8): 480-481.

8.        Arniza, M. Z., Seng, S. H., Idris, Z., Shoot, K. Y., Abu Hassan, H, Din, A. K. and Yuen, M. C. (2015). Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol. Journal of American Oil Chemistry Society, 92(2): 243-255.

9.        Ramli, M. R., Siew W. L., Cheah, K. Y., Idris, N. A. and Mat Sahri, M. (2008). Physico-chemical properties and performance of high oleic and palm-based shortenings. Journal of Oleo Science, 57(11): 605-612.

10.    Phan, A. N. and Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87: 3490-3496.

11.    Rafael, C. R. and Roberto, F. L. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modifications. Journal of Molecular Catalysis B-Enzymatic, 66(1-2): 15-32.

12.    Yigitoglu, M. and Temocin, Z. (2010). Immobilization of C. rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. Journal of Molecular Catalysis B: Enzymatic, 66(1-2): 130-135.

13.    Zhang, X., Niea,K., Zheng, Y., Wang,F., Deng, L. and Tan, T. (2016). Lipase Candida Sp. 99-125Coupled With-Cyclodextrin as Additive Synthesized the Human Milk Fat Substitutes. Journal of Molecular Catalysis B: Enzymatic, 125: 1-5.

14.    BezbradicA, D., Karalazi, I., Ognjanovi, N., Mijin, D., Siler-Marinkovi, S. and Knezevic, Z. (2006). Studies on specificity of candida rugosa lipase catalyzed esterification reaction in organic media.           Journal of Serbian Chemical Society, 71(1): 31-41.

15.    Przybylski, R., Gruczynska, E. and Aladedunye, F. (2013). Performance of regular and modified canola and soybean oils in rotational frying. Journal of American Oil Chemists’ Society, 90: 1271-1280.

16.    Pazouki, M., Zamani, F., Zamzamian, A. H., Fahar, M. and Najafpour, G. (2010). Esterification of free fatty acids by Rhizopus oryzae as cell-catalysed from used cooking oil for biodiesel production. World Applied Sciences Journal, 8(6): 719-724.

17.    Hasnisa, H. and Jumat, S. (2012). Enzymatic acidolysis of palm olein with PUFA to improve linoleic and α-linolenic acids ratio. Journal of Tropical Agriculture and Food Science, 40(1): 71-79.

18.    IFRA. (2011). Analytical Method: Determination of the Peroxide Value. Access online www.ifraorg.org/view_document.aspx?docId=22291.

19.    AOCS. (1989). Official methods and recommended practices of the American oil chemists’ society. Ca 5a–40, Cd 1b–87 and Cd 8–53.4. Champaign IL, American Oil Chemists’ Society.

20.    Zou, X. G., Hu, J. N., Zhao, M. L., Zhu, X. M., Li, H. Y., Liu, X. R., Liu, R. and Deng, Z. Y. (2014). Lipozyme RM IM-catalysed acidolysis of cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. Journal of Agricultural and Food Chemistry, 62(43): 10594-10603.

21.    Siew, W. L. and Saw, M. H. (2009). High oleic enhancement of palm olein via enzymatic interesterification. Journal of Oleo Science, 58(11): 549-555.

22.    Senanayake, S. P. J. and Shahidi, F. (2002). Structured lipids via lipase-catalysed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils. Journal of Agricultural and Food Chemistry, 50(3): 477-483.

23.    Karakaya, S. and Simsek, S. (2011). Changes in total polar compounds, peroxide value, total phenols, and antioxidant activity of various oils used in deep fat frying. Journal of American Oil Chemists’ Society, 88(9): 1361-1366.

24.    Fan, H. Y., Sharifudin, M. S., Hasmadi, M. and Chew, H. M. (2013). Frying stability of rice bran oil and palm olein. International Food Research Journal, 20(1): 403-407.

25.    Talpur, M. Y., Sherazi, S. T. H., Mahesar, S. A. and Kandhro, A. A. (2009). Effects of chicken frying on soybean, sunflower, and canola oils. Pakistan Journal of Analytical and Environmental Chemistry, 10(1-2): 59-66.

26.    Kulkarni, M. G. and Dalai, A. K. (2006). Waste cooking oil-an economical source for biodiesel: A review. Indian Journal of Chemical Engineering, 45(9): 2901-2913.

27.    Cvengros, J. and Cvengrosova, Z. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2): 173-181.

28.    Aladedunye F. A. and Przybylski, R. (2009). Protecting oil during frying: A comparative study. European Journal of Lipid Science and Technology, 111(9): 893-901.

29.    Majidi, M. I. H. A. L and Bader, A. T. (2015). Sciences physicochemical characteristics of some imported edible vegetable oils in Iraq. Research Journal of Pharmaceutical, Biological and Chemical, 6(5): 488-494.

30.    Kaleem, A., Aziz, S., Iqtedar, M., Abdullah, R., Aftab, M., Rashid, F., Shakoori, F. R. and Naz, S. (2015). Investigating changes and effect of peroxide values in cooking oils subject to light and heat. FUUAST Journal of Biology, 5(2): 191-196.

31.    Choo, Y. M. and Nesaretnam, K. (2014). Research advancement in palm oil nutrition. European Journal of Lipid Scientific Technology, 116(10): 1301-1315.

32.    Savaghebi, D., Safari, M., Rezaei, K., Ashtari, P. and Farmani, J. (2012). Structured lipids produced through lipase-catalysed acidolysis of canola oil. Journal of Agricultural Science Technology, 14(6): 1297-1310.

33.    Kocak, D., Keskin, H., Fadiloglu, S., Kowalski, B. and Gogus, F. (2011). Characterization of terebinth fruit oil and optimization of acidolysis reaction with caprylic and stearic acids. Journal of American Oil Chemists’ Society, 88(10): 1531-1538.

34.    Zhao, H., Lu, Z., Bie, X., Lu, F. and Liu, Z. (2007). Lipase catalysed acidolysis of lard with capric acid in organic solvent. Journal of Food Engineering, 78(1): 41-46.

35.    Hamam, F. and Shahidi, F. (2004). Enzymatic acidolysis of an arachidonic acid single-cell oil with capric acid. Journal of the American Oil Chemists' Society, 81(9): 887-892.

36.    Çiftçi, O.N., Fadiloǧlu, S., Kowalski, B. and Göǧüş, F. (2008). Synthesis of cocoa butter triacylglycerols using a model acidolysis system. Grasas y Aceites, 59(4): 316-320.

37.    Páez, B. C., Medina, A. R., Rubio, F. C., Morenoa, P. G. and Grima, E. M. (2003). Modelling the effect of free water on enzyme activity in immobilized lipase-catalysed reactions in organic solvents. Enzyme and Microbial Technology, 33(6): 845-853.

 




Previous                    Content                    Next