Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 626 - 632

DOI: 10.17576/mjas-2018-2204-08

 

 

 

SYNERGISTIC EXTRACTANT FOR EXTRACTION OF REMAZOL ORANGE 3R IN LIQUID MEMBRANE FORMULATION

 

(Pengekstrak Sinergistik untuk Pengekstrakan Remazol Orange 3R dalam Formulasi Membran Cecair)

 

Hilmi Abdul Rahman1, Norasikin Othman1,2*, Muhammad Bukhari Rosly1, Raja Norimie Raja Sulaiman1, Norela Jusoh1, Norul Fatiha Mohamed Noah1

 

1Department of Chemical Engineering, Faculty of Chemical and Energy Engineering,

2Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  norasikin@cheme.utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Currently, various synthetic dyes are used in the textile industry and a lot of non-bonded dyes are released into the wastewater; increasing its toxicity and carcinogenicity. Liquid membrane process is one of the potential methods to eliminate these unwanted particles from the wastewater. The most crucial part of the liquid membrane process is its formulation; especially the extractant or carrier. In order to find a suitable extractant, liquid-liquid extraction process was carried out. The effect of synergistic extractant to extract the Remazol Orange 3R reactive dyes in a shorter time and at a lower concentration of extractant was investigated in this study. Several parameters have been studied such as extractant type, extractant concentration, synergist extractant type and synergist extractant concentration. The results show that, Remazol Orange 3R reactive dyes were extracted by tridodecylamine (TDA) as a base and trioctylamine (TOA) as a synergist extractant. Meanwhile, the salicyclic acid (SA) was used to protonate the TDA and TOA, and cooking palm oil was used as a diluent. The performance of extraction of reactive dyes at the 0.1 M concentration of extractant was 70% when synergistic system was applied compared to single extractant which was only 50% of the dyes have been extracted. Therefore, the synergistic extractant has a potential to be further utilised in liquid membrane studies on the extraction of reactive dyes.

 

Keywords:  liquid membrane, liquid-liquid extraction, synergistic extractant, synergist, extractant

 

Abstrak

Pada masa ini, pelbagai pewarna sintetik digunakan dalam industri tekstil dan banyak pewarna tanpa terikat dilepaskan ke dalam air sisa sehingga meningkatkan kadar toksik dan karsinogenik. Proses membran cecair adalah salah satu kaedah yang berpotensi untuk menghapuskan zarah-zarah yang tidak diingini dari air sisa. Formulasi membran adalah bahagian paling penting dalam proses membran cecair; terutamanya pengekstrak atau pembawa. Bagi mencari pengekstrak yang sesuai, proses pengekstrakan cecair-cecair telah dijalankan. Kesan sinergis pengekstrak untuk mengekstrak pewarna reaktif Remazol Orange 3R dalam masa yang lebih singkat dan pada kepekatan ekstrak yang lebih rendah telah dikaji. Beberapa parameter telah dikaji seperti jenis pengekstrak, kepekatan pengekstrak, jenis pengekstrak sinergis dan kepekatan pengekstrak sinergis. Keputusan menunjukkan bahawa, pewarna reaktif Remazol Orange 3R diekstrak oleh tridodekilamina (TDA) sebagai asas dan trioktilamina (TOA) sebagai sinergis. Sementara itu, asid salisiklik (SA) digunakan untuk protonate TDA dan TOA, dan minyak kelapa sawit digunakan sebagai pelarut. Prestasi pewarna reaktif yang diekstrak adalah sebanyak 70% apabila sistem sinergistik digunakan berbanding dengan hanya satu pengekstrak digunakan yang hanya 50% daripada pewarna telah diekstrak pada kepekatan 0.1M pengekstrak. Oleh itu, pengekstrak sinergis mempunyai potensi untuk digunakan dalam kajian membran cecair pada pengekstrakan pewarna reaktif dimasa hadapan.

 

Kata kunci:  membran cecair, pengekstrakan cecair-cecair, pengekstrak sinergistik, sinergis, pengekstrak

 

References

1.       Othman, N., Zailani, S. N. and Mili, N. (2011). Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier. Journal of Hazardous Materials, 198: 103-112.

2.       Bahloul, L., Ismail, F. and Samar, M. E. H. (2013). Extraction and desextraction of a cationic dye using an emulsified liquid membrane in an aqueous solution. Energy Procedia, 36: 1232-1240.

3.       Carmen, Z. and Daniela, S. (2010). Textile organic dyes – characteristics, polluting effects and separation/ elimination procedures from industrial effluents – a critical overview. Organic Pollutants Ten Years after the Stockholm Convention - Environmental and Analytical Update. pp. 55 – 86.

4.       Zaharia, C., Suteu, D., Muresan, A., Muresan, R. and Popescu, A. (2009). Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6): 1359-1369.

5.       Daneshvar, N., Ayazloo, M., Khataee, A. R. and Pourhassan, M. (2007). Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresource Technology, 98(6): 1176-1182.

6.       Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E. and Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3): 157-167.

7.       Chakraborty, M., Bhattacharya, C. and Datta, S. (2010). Chapter 4 - emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions and perspectives A2 - Kislik, Vladimir S. BT - Liquid Membranes. Elsevier, Amsterdam: pp. 141–199.

8.       Chanukya, B. S. and Rastogi, N. K. (2013). Extraction of alcohol from wine and color extracts using liquid emulsion membrane. Separation and Purification Technology, 105: 41-47.

9.       Mokhtari, B. and Pourabdollah, K. (2013). Emulsion liquid membrane for selective extraction of bismuth from nitrate medium. Korean Journal of Chemical Engineering, 30(7): 1458-1465.

10.    Othman, N., Ooi, Z. Y., Zailani, S.N., Zulkifli, E. Z. and Subramaniam, S. (2013). Extraction of Rhodamine 6G dye from liquid waste solution: Study on emulsion liquid membrane stability performance and recovery. Journal of Separation Science and Technology, 48(8): 1177-1183.

11.    Othman, N., Mat, H. and Goto, M. (2005). Separation of silver from photographic wastes by emulsion liquid membrane system. Journal of Membrane Science, 282(1-2): 171-177.

12.    Othman, N., Noah, N. F. M., Poh, K. W. and Yi, O. Z. (2016). High performance of chromium recovery from aqueous waste solution using mixture of palm-oil in emulsion liquid membrane. Procedia Engineering, 148(6): 765-773.

13.    Sain, R. S., Ray, S. and Basu, S. (2014). Synergism in solvent extraction and solvent extraction kinetics. Journal of Chemical, Biological and Physical Sciences, 4(4): 3156-3181.

14.    Wojciechowski, K., Kucharek, M. and Buffle, J. (2008). Mechanism of Cu(II) transport through permeation liquid membranes using azacrown ether and fatty acid as carrier. Journal of Membrane Science, 314(1-2): 152-162.

15.    Darvishi, D., Haghshenas, D. F., Alamdari, E. K., Sadrnezhaad, S. K. and Halali, M. (2005). Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt and nickel by D2EHPA. Hydrometallurgy, 77(3-4): 227-238.

16.    Biswas, S., Pathak, P. N. and Roy, S. B. (2012). Carrier facilitated transport of uranium across supported liquid membrane using dinonyl phenyl phosphoric acid and its mixture with neutral donors. Desalination, 290: 74-82.

17.    Rajewski, J. and Religa, P. (2016). Synergistic extraction and separation of chromium(III) from acidic solution with a double-carrier supported liquid membrane. Journal of Molecular Liquids, 218:309-315.

18.    Bruice, P. Y. (2006). Essential organic chemistry (1st ed). Pearson Prentice Hall, Upper Saddle River, New Jersey.

19.    Solomons, T. W. G. and Fryhle, C. B. (2011). Organic chemistry (10th ed). John Wiley & Sons (Asia) Pte Ltd, Asia.

20.    Homsirikamol, C., Sunsandee, N., Pancharoen, U. and Nootong, K. (2016). Synergistic extraction of amoxicillin from aqueous solution by using binary mixtures of Aliquat 336, D2EHPA and TBP. Separation and Purification Technology, 162: 30-26.

21.    Kislik, V. S. (2010). Liquid membrane principles and applications in chemical separations and wastewater treatment (1st edition). Elsevier B.V, Linacre House, N.

22.    Kim, J. S., Han, K. S., Kim, S. J., Kim, S. D., Lee, J. Y., Han, C. and Kumar, J. R. (2015). Synergistic extraction of uranium from korean black shale ore leach liquors using amine with phosphorous based extractant systems. Journal of Radioanalytical and Nuclear Chemistry, 307(2): 843-854.

23.    Guezzen, B. and Didi, M. A. (2012). Removal of Zn(II) from aqueous acetate solution using di (2-ethylhexyl) phosphoric acid and tributylphosphate. International Journal of Chemistry, 4(3): 32-41.

 




Previous                    Content                    Next