Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 626 - 632
DOI:
10.17576/mjas-2018-2204-08
SYNERGISTIC EXTRACTANT FOR EXTRACTION OF REMAZOL
ORANGE 3R IN LIQUID MEMBRANE FORMULATION
(Pengekstrak
Sinergistik untuk Pengekstrakan Remazol Orange 3R dalam Formulasi Membran
Cecair)
Hilmi Abdul Rahman1, Norasikin Othman1,2*,
Muhammad Bukhari Rosly1, Raja Norimie Raja Sulaiman1, Norela Jusoh1, Norul Fatiha Mohamed Noah1
1Department of Chemical Engineering, Faculty of
Chemical and Energy Engineering,
2Centre of Lipids Engineering & Applied Research
(CLEAR), Ibnu Sina Institute for Scientific and Industrial Research
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding
author: norasikin@cheme.utm.my
Received: 16
April 2017; Accepted: 7 March 2018
Abstract
Currently,
various synthetic dyes are used in the textile industry and a lot of non-bonded
dyes are released into the wastewater; increasing its toxicity and
carcinogenicity. Liquid membrane process is one of the potential methods to
eliminate these unwanted particles from the wastewater. The most crucial part
of the liquid membrane process is its formulation; especially the extractant or
carrier. In order to find a suitable extractant, liquid-liquid extraction process
was carried out. The effect of synergistic extractant to extract the Remazol
Orange 3R reactive dyes in a shorter time and at a lower concentration of
extractant was investigated in this study. Several parameters have been studied
such as extractant type, extractant concentration, synergist extractant type
and synergist extractant concentration. The results show that, Remazol Orange
3R reactive dyes were extracted by tridodecylamine (TDA) as a base and
trioctylamine (TOA) as a synergist extractant. Meanwhile, the salicyclic acid
(SA) was used to protonate the TDA and TOA, and cooking palm oil was used as a
diluent. The performance of extraction of reactive dyes at the 0.1 M
concentration of extractant was 70% when synergistic system was applied
compared to single extractant which was only 50% of the dyes have been
extracted. Therefore, the synergistic extractant has a potential to be further
utilised in liquid membrane studies on the extraction of reactive dyes.
Keywords: liquid membrane, liquid-liquid extraction, synergistic
extractant, synergist, extractant
Abstrak
Pada masa ini, pelbagai pewarna
sintetik digunakan dalam industri tekstil dan banyak pewarna tanpa terikat
dilepaskan ke dalam air sisa sehingga meningkatkan kadar toksik dan
karsinogenik. Proses membran cecair adalah salah satu kaedah yang berpotensi
untuk menghapuskan zarah-zarah yang tidak diingini dari air sisa. Formulasi
membran adalah bahagian paling penting dalam proses membran cecair; terutamanya
pengekstrak atau pembawa. Bagi mencari pengekstrak yang sesuai, proses
pengekstrakan cecair-cecair telah dijalankan. Kesan sinergis pengekstrak untuk
mengekstrak pewarna reaktif Remazol Orange 3R dalam masa yang lebih singkat dan
pada kepekatan ekstrak yang lebih rendah telah dikaji. Beberapa parameter telah
dikaji seperti jenis pengekstrak, kepekatan pengekstrak, jenis pengekstrak
sinergis dan kepekatan pengekstrak sinergis. Keputusan menunjukkan bahawa,
pewarna reaktif Remazol Orange 3R diekstrak oleh tridodekilamina (TDA) sebagai
asas dan trioktilamina (TOA) sebagai sinergis. Sementara itu, asid salisiklik
(SA) digunakan untuk protonate TDA dan TOA, dan minyak kelapa sawit digunakan
sebagai pelarut. Prestasi pewarna reaktif yang diekstrak adalah sebanyak 70%
apabila sistem sinergistik digunakan berbanding dengan hanya satu pengekstrak
digunakan yang hanya 50% daripada pewarna telah diekstrak pada kepekatan 0.1M
pengekstrak. Oleh itu, pengekstrak sinergis mempunyai potensi untuk digunakan
dalam kajian membran cecair pada pengekstrakan pewarna reaktif dimasa hadapan.
Kata kunci: membran cecair, pengekstrakan cecair-cecair,
pengekstrak sinergistik, sinergis, pengekstrak
References
1.
Othman,
N., Zailani, S. N. and Mili, N. (2011). Recovery of synthetic dye from
simulated wastewater using emulsion liquid membrane process containing
tri-dodecyl amine as a mobile carrier. Journal
of Hazardous Materials, 198: 103-112.
2.
Bahloul,
L., Ismail, F. and Samar, M. E. H. (2013). Extraction and desextraction of a
cationic dye using an emulsified liquid membrane in an aqueous solution. Energy Procedia, 36: 1232-1240.
3.
Carmen,
Z. and Daniela, S. (2010). Textile organic dyes – characteristics, polluting
effects and separation/ elimination procedures from industrial effluents – a
critical overview. Organic Pollutants Ten Years after the Stockholm Convention
- Environmental and Analytical Update. pp. 55 – 86.
4.
Zaharia,
C., Suteu, D., Muresan, A., Muresan, R. and Popescu, A. (2009). Textile
wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environmental Engineering and Management
Journal, 8(6): 1359-1369.
5.
Daneshvar,
N., Ayazloo, M., Khataee, A. R. and Pourhassan, M. (2007). Biological decolorization
of dye solution containing malachite green by microalgae Cosmarium sp. Bioresource
Technology, 98(6): 1176-1182.
6.
Villegas,
L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E. and Biswas, N.
(2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3): 157-167.
7.
Chakraborty,
M., Bhattacharya, C. and Datta, S. (2010). Chapter 4 - emulsion liquid
membranes: Definitions and classification, theories, module design,
applications, new directions and perspectives A2 - Kislik, Vladimir S. BT -
Liquid Membranes. Elsevier, Amsterdam: pp. 141–199.
8.
Chanukya,
B. S. and Rastogi, N. K. (2013). Extraction of alcohol from wine and color
extracts using liquid emulsion membrane. Separation
and Purification Technology, 105: 41-47.
9.
Mokhtari,
B. and Pourabdollah, K. (2013). Emulsion liquid membrane for selective
extraction of bismuth from nitrate medium. Korean
Journal of Chemical Engineering, 30(7): 1458-1465.
10.
Othman,
N., Ooi, Z. Y., Zailani, S.N., Zulkifli, E. Z. and Subramaniam, S. (2013).
Extraction of Rhodamine 6G dye from liquid waste solution: Study on emulsion
liquid membrane stability performance and recovery. Journal of Separation Science and Technology, 48(8): 1177-1183.
11.
Othman,
N., Mat, H. and Goto, M. (2005). Separation of silver from photographic wastes
by emulsion liquid membrane system. Journal
of Membrane Science, 282(1-2): 171-177.
12.
Othman,
N., Noah, N. F. M., Poh, K. W. and Yi, O. Z. (2016). High performance of
chromium recovery from aqueous waste solution using mixture of palm-oil in
emulsion liquid membrane. Procedia
Engineering, 148(6): 765-773.
13.
Sain,
R. S., Ray, S. and Basu, S. (2014). Synergism in solvent extraction and solvent
extraction kinetics. Journal of Chemical,
Biological and Physical Sciences, 4(4): 3156-3181.
14.
Wojciechowski,
K., Kucharek, M. and Buffle, J. (2008). Mechanism of Cu(II) transport through
permeation liquid membranes using azacrown ether and fatty acid as carrier. Journal of Membrane Science, 314(1-2):
152-162.
15.
Darvishi,
D., Haghshenas, D. F., Alamdari, E. K., Sadrnezhaad, S. K. and Halali, M.
(2005). Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt
and nickel by D2EHPA. Hydrometallurgy,
77(3-4): 227-238.
16.
Biswas,
S., Pathak, P. N. and Roy, S. B. (2012). Carrier facilitated transport of
uranium across supported liquid membrane using dinonyl phenyl phosphoric acid
and its mixture with neutral donors. Desalination,
290: 74-82.
17.
Rajewski,
J. and Religa, P. (2016). Synergistic extraction and separation of chromium(III)
from acidic solution with a double-carrier supported liquid membrane. Journal of Molecular Liquids, 218:309-315.
18.
Bruice,
P. Y. (2006). Essential organic chemistry (1st ed). Pearson Prentice
Hall, Upper Saddle River, New Jersey.
19.
Solomons,
T. W. G. and Fryhle, C. B. (2011). Organic chemistry (10th ed). John
Wiley & Sons (Asia) Pte Ltd, Asia.
20.
Homsirikamol,
C., Sunsandee, N., Pancharoen, U. and Nootong, K. (2016). Synergistic
extraction of amoxicillin from aqueous solution by using binary mixtures of Aliquat
336, D2EHPA and TBP. Separation and
Purification Technology, 162: 30-26.
21.
Kislik,
V. S. (2010). Liquid membrane principles and applications in chemical
separations and wastewater treatment (1st edition). Elsevier B.V, Linacre
House, N.
22.
Kim,
J. S., Han, K. S., Kim, S. J., Kim, S. D., Lee, J. Y., Han, C. and Kumar, J. R.
(2015). Synergistic extraction of uranium from korean black shale ore leach
liquors using amine with phosphorous based extractant systems. Journal of Radioanalytical and Nuclear
Chemistry, 307(2): 843-854.
23.
Guezzen,
B. and Didi, M. A. (2012). Removal of Zn(II) from aqueous acetate solution
using di (2-ethylhexyl) phosphoric acid and tributylphosphate. International Journal of Chemistry, 4(3):
32-41.