Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 642 - 647
DOI:
10.17576/mjas-2018-2204-10
ADSORBENTS
FROM THE BY-PRODUCT OF PALM OIL REFINERY FOR METHYLENE BLUE REMOVAL
(Penjerap daripada Produk Sampingan Penapisan Minyak Sawit
untuk Penyingkiran Metilena Biru)
Hamzat Bashir
Aderemi1, 2, Muhammad Abbas Ahmad Zaini1, 3*, Noor Shawal
Nasri3, 4
1Centre of Lipids Engineering & Applied Research,
Ibnu-Sina Institute for Scientific & Industrial Research
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2Chemical Engineering Department,
Kaduna
Polytechnic, Kaduna, Nigeria
3Faculty of Chemical & Energy Engineering
4UTM-MPRC Institute for Oil & Gas
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding
author: abbas@cheme.utm.my
Received: 16
April 2017; Accepted: 7 March 2018
Abstract
The present work
was aimed at evaluating the removal of methylene blue by palm fatty acid
distillate-based adsorbents. The adsorbents at different weight ratios of palm
fatty acid distillate (PFAD) to palm kernel shell (PKS) were prepared at 600 °C
for 2 hours. Results show that the yield of adsorbent upon heat treatment
decreased with increasing weight ratio, with yield as low as 0.53% was recorded
by adsorbent derived by using only PFAD. The methylene blue adsorption data
show a promising performance of PFAD-based adsorbents as compared to that of
PKS-adsorbent (char) with qe = 7.6 mg/g at Co = 20.8 mg/L. To conclude, PFAD is a potential candidate of dye
adsorbent.
Keyword: adsorbent,
methylene blue, palm fatty acid distillate, palm kernel shell
Abstrak
Tujuan kajian ini adalah
untuk menilai penyingkiran metilena biru oleh penjerap berasaskan distilat asid
lemak sawit. Penjerap pada nisbah berat distilat asid lemak sawit (PFAD) kepada
isirong sawit (PKS) disediakan pada 600 °C selama 2 jam. Keputusan menunjukkan
bahawa hasil penjerap setelah rawatan haba berkurang dengan peningkatan nisbah
berat, dengan hasil serendah 0.53% direkodkan oleh penjerap terbitan PFAD
sahaja. Data penjerapan metilena biru menunjukkan prestasi menjanjikan oleh
penjerap berasaskan PFAD berbanding penjerap berasaskan PKS (arang) dengan qe = 7.6 mg/g pada Co = 20.8 mg/L.
Kesimpulannya, PFAD ialah calon berpotensi sebagai penjerap pencelup.
Kata kunci: penjerap, metilena biru, distilat asid lemak sawit,
isirong sawit
References
1.
Garlapati,
V. K., Shankar, U. and Budhiraja, A. (2016). bioconversion technologies of
crude glycerol to value added industrial products. Biotechnology Reports,
9: 9-14.
2.
Mahmood,
W. M. F. W., Ariffin, M. A., Harun, Z., Ishak, N. A. I. Md., Ghani, J. A. and
Rahman, M. N. Ab. (2015). Characterisation and potential use of biochar from
gasified oil palm wastes. Journal of Engineering Science and Technology,
6: 45-54.
3.
Ping,
B. T. Y. and Yusof, M. (2009). Characteristics and properties of fatty acid
distillates from palm oil. Oil Palm Bulletin, 59: 5-11.
4.
Top,
A. G. M. (2010) Production and utilization of palm fatty acid distillates (PFAD).
Lipid Technology, 22(1): 11-13.
5.
Shu-Hui,
T. and Zaini, M. A. A. (2015). Potassium hydroxide activation of activated
carbon: A commentary. Carbon Letters, 16(4): 275-280.
6.
Zaini,
M. A. A., Mohd-Setapar, S. H., Kamaruddin, M. J. and Yunus, M. A. C. (2013).
In-depth studies of cattle-manure-compost activated carbons for Cu(II) ions
removal. Agricultural Research Updates, 6: 247 – 265.
7.
Hamza,
U. D., Nasri, N. S., Amin, N. S., Mohammed, J. and Zain, H. M. (2016).
Characteristics of oil palm shell biochar and activated carbon prepared at
different carbonization times. Desalination and Water Treatment, 57(17):
7999-8006.
8.
Pezoti
Jr., O., Cazetta, A. L., Souza, I. P. A. F., Bedin, K. C., Martins, A. C.,
Silva, T. L. and Almeida, V. C. (2014). Adsorption studies of methylene blue
onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.). Journal of
Industrial and Engineering Chemistry, 20(6): 4401-4407.
9.
Zaini, M. A. A., Okayama, R. and
Machida, M. (2009). Adsorption
of aqueous metal ions on cattle-manure-compost based activated carbons. Journal of Hazardous Materials, 170(2-3): 1119-1124.
10.
Langmuir,
I. (1918). The adsorption of gases on plane surfaces of glass, mica and
platinum. Journal of American Chemical Society, 40(9): 1361-1403.
11.
Freundlich,
H. M. F. (1906). Over the adsorption in solution. The Journal of Physical
Chemistry, 57: 385-470.
12.
Zhi,
L. L. and Zaini, M. A. A. (2017). Adsorption properties of cationic rhodamine B
dye onto metals chloride-activated castor bean residue carbons. Water
Science and Technology, 75(4): 864-880.
13.
Shu-Hui
T. and Zaini, M. A. A. (2017). Malachite green adsorption by potassium
salts-activated carbons derived from textile sludge: Equilibrium, kinetics and
thermodynamics studies. Asia-Pacific Journal of Chemical Engineering, 12:
159-172.
14.
Zaini, M. A. A. and
Mohamad, N. A. (2015). Activated charcoal for oral medicinal
purposes: Is it really activated? Journal of Applied Pharmaceutical Science, 5(10): 157-159.