Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 619 - 625

DOI: 10.17576/mjas-2018-2204-07

 

 

 

EXTRACTION OF EICOSAPENTAENOIC ACID FROM Nannochloropsis gaditana USING SUB-CRITICAL WATER EXTRACTION

 

(Pengekstrakan Asid Eikosapentaenoik daripada Nannochloropsis gaditana dengan Menggunakan Kaedah Air Sub-kritikal)

 

Bernard Chon Han Ho1, Siti Mazlina Mustapa Kamal2, Mohd Razif Harun1*

 

1Department of Chemical and Environmental Engineering

2Department of Process and Food Engineering

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  mh_razif@upm.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Microalgae had been utilized for biofuel production due to the presence of high lipid concentrations in the past year. However, the current interest is to convert their lipids to produce value added products such as omega-3. Various types of microalgae are known to be rich in omega-3. Hence, a more sustainable and high efficiency extraction method is required to ensure its viability. Sub-critical water extraction (SWE) is an emerging extraction technique as the technique involves shorter period of extraction, high efficiency and most importantly uses green and environmentally friendly solvent (water). In this preliminary experiment, different  process conditions of  SWE include temperature (156 – 274 °C), biomass loading (33 – 117 g/L) and retention time (6.6 – 23.4 minutes) were investigated on microalga, Nannochloropsis gaditana. The maximum yields of lipid and eicosapentaenoic acid (EPA) extracted were 17.86 wt.% of biomass and 15.78 wt.% of total fatty acid methyl ester (FAME), respectively. This productivity level (~16 wt.%) which is in keeping or higher than that of current production systems endorses SWE as a promising extraction technique for microalgal EPA production. Future works on optimization of SWE parameters will be performed to achieve the highest EPA concentration.

 

Keywords:  eicosapentaenoic acid, green extraction, microalgae, omega-3, sub-critical

 

Abstrak

Mikroalga telah digunakan secara menyeluruh menghasilkan bahan api bio kerana ia mempunyai kadar kepekatan minyak yang tinggi. Bagaimanapun, tarikan semasa tertumpu pada penukaran minyak untuk menghasilkan produk berharga seperti omega-3. Banyak jenis mikroalga adalah kaya dengan omega-3. Oleh sebab itu, kaedah pengekstrakan yang mapan dan efisien diperlukan untuk menjamin daya maju mikroalga dalam penghasilan omega-3. Kaedah pengekstrakan air sub-kritikal (SWE) merupakan kaedah baru yang memerlukan masa pengekstrakan yang pendek, efisien dan menggunakan air sahaja sebagai pelarut. Dalam eksperimen awal ini, keadaan proses yang berbeza termasuk suhu (156 – 274 °C), muatan biojisim (33 – 117 g/L) dan tempoh pengekstrakan (6.6 – 23.4 minit) telah dikaji dengan menggunakan mikroalga, Nannochloropsis gaditana. Kadar maksimum minyak dan asid eikosapentaenoik (EPA) di ekstrak masing-masing ialah 17.86 wt.% daripada jumlah biojisim dan 15.78 wt.% daripada jumlah asid lemak metil ester (FAME). Kadar pengekstrakan yang tinggi ini (~16 wt.%) berbanding dengan kaedah semasa menunjukkan bahawa SWE ini ialah kaedah pengekstrakan yang mempunyai harapan untuk menghasilkan EPA daripada mikroalga pada masa hadapan. Pengoptimuman bagi parameter SWE untuk mendapatkan kadar kepekatan EPA yang paling tinggi akan dilakukan pada masa hadapan.

 

Kata kunci:  asid eikosapentaenoik, pengekstrakan hijau, mikroalga, omega-3, sub-kritikal

 

References

1.       Dyall, S. C. (2015). Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience, 7(52): 1-15.

2.       Kastelein, J. J. P., Maki, K. C., Susekov, A., Ezhov, M., Nordestgaard, B. G., Machielse, B. N., Kling, D. and Davidson, M. H. (2014). Omega-3 Free Fatty Acids for the Treatment of Severe Hypertriglyceridemia: The EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial. Journal of Clinical Lipidology, 8 (1): 94-106.

3.       Maki, K. C., Orloff, D. G., Nicholls, S. J., Dunbar, R. L., Roth, E. M., Curcio, D., Johnson, J., Kling, D. and Davidson, M. H. (2013). A highly bioavailable omega-3 free fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT Trial). Clinical Therapeutics, 35 (9): 1400-1411.

4.       Wall, R., Ross, R. P., Fitzgerald, G. F. and Stanton, C. (2010). Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68 (5): 280-289.

5.       Weylandt, K. H., Chiu, C. Y., Gomolka, B., Waechter, S. F. and Wiedenmann, B. (2012). Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation. Prostaglandins and Other Lipid Mediators, 97(3): 73-82.

6.       Mandal, C. C., Ghosh-Choudhury, T., Yoneda, T., Choudhury, G. G. and Ghosh-Choudhury, N. (2010). Fish oil prevents breast cancer cell metastasis to bone. Biochemical and Biophysical Research Communications, 402(4): 602-607.

7.       Murphy, R. A., Mourtzakis, M., Chu, Q. S., Baracos, V. E., Reiman, T. and Mazurak, V. C. (2011). Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with non-small cell lung cancer receiving chemotherapy. Cancer, 117(8): 1775-1782.

8.       Swanson, D., Block, R. and Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition: An International Review Journal, 3(1): 1-7.

9.       Turchini, G. M., Nichols, P. D., Barrow, C. and Sinclair, A. J. (2012). Jumping on the omega-3 Bandwagon: Distinguishing the role of long-chain and short-chain omega-3 fatty acids. Critical Reviews in Food Science and Nutrition, 52(9): 795-803.

10.    Dawczynski, C., Martin, L., Wagner, A. and Jahreis, G. (2010). N-3 LC-PUFA-enriched dairy products are able to reduce cardiovascular risk factors: a double-blind, cross-over study. Clinical Nutrition, 29(5): 592-599.

11.    Tur, J. A., Bibiloni, M. M., Sureda, A. and Pons, A. (2012). Dietary sources of omega 3 fatty acids: public health risks and benefits. British Journal of Nutrition, 107(Supplement 2): S23-52.

12.    Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P. and Ruan, R. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110: 448-455.

13.    Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Hadavand Mirzaei, H., Mirzajanzadeh, M., Malekzadeh Shafaroudi, S. and Bakhtiari, S. (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(3): 258-267.

14.    Griffiths, M. J., van Hille, R. P. and Harrison, S. T. L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology, 24(5): 989-1001.

15.    Arterburn, L. M., Oken, H. A., Bailey Hall, E., Hamersley, J., Kuratko, C. N. and Hoffman, J. P. (2008). Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7): 1204-1209.

16.    Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y. and Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1): 96.

17.    Treyvaud Amiguet, V., Kramp, K. L., Mao, J., McRae, C., Goulah, A., Kimpe, L. E., Blais, J. M. and Arnason, J. T. (2012). Supercritical carbon dioxide extraction of polyunsaturated fatty acids from northern shrimp (Pandalus borealis kreyer) processing by-products. Food Chemistry, 130(4): 853-858.

18.    Reddy, H. K., Muppaneni, T., Sun, Y., Li, Y., Ponnusamy, S., Patil, P. D., Dailey, P., Schaub, T., Holguin, F. O., Dungan, B., Cooke, P., Lammers, P., Voorhies, W., Lu, X. and Deng, S. (2014). Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 133: 73-81.

19.    Griffiths, M. J., van Hille, R. P. and Harrison, S. T. (2010). Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids, 45(11): 1053-1060.

20.    Brunner, G. (2009). Near critical and supercritical water. part I. hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3): 373-381.

21.    Lu, Y., Levine, R. B. and Savage, P. E. (2015). Fatty acids for nutraceuticals and biofuels from hydrothermal carbonization of microalgae. Industrial & Engineering Chemistry Research, 54(16): 4066-4071.

22.    Toor, S. S., Rosendahl, L. and Rudolf, A. (2011). hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5): 2328-2342.

23.    Horwitz, W. (1990). Official methods of analysis of AOAC international. AOAC International, USA.

24.    Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K. and Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160: 393-400.

25.    Akhtar, J. and Amin, N. A. S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15(3): 1615-1624.

26.    Milledge, J. J. and Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12(2): 165-178.

27.    Kolanowski, W., Jaworska, D. and Weißbrodt, J. (2007). Importance of instrumental and sensory analysis in the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated fatty acid-rich foods. Journal of the Science of Food and Agriculture, 87(2): 181-191.




Previous                    Content                    Next