Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 619 - 625
DOI:
10.17576/mjas-2018-2204-07
EXTRACTION OF
EICOSAPENTAENOIC ACID FROM Nannochloropsis
gaditana USING SUB-CRITICAL WATER EXTRACTION
(Pengekstrakan Asid Eikosapentaenoik daripada Nannochloropsis gaditana dengan Menggunakan
Kaedah Air Sub-kritikal)
Bernard Chon Han
Ho1, Siti Mazlina Mustapa Kamal2, Mohd Razif Harun1*
1Department of
Chemical and Environmental Engineering
2Department of
Process and Food Engineering
Universiti Putra
Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding
author: mh_razif@upm.edu.my
Received:
16 April 2017; Accepted: 7 March 2018
Abstract
Microalgae had been utilized for biofuel
production due to the presence of high lipid concentrations in the past year.
However, the current interest is to convert their lipids to produce value added
products such as omega-3. Various types of microalgae are known to be rich in
omega-3. Hence, a more sustainable and high efficiency extraction method is
required to ensure its viability. Sub-critical water extraction (SWE) is an
emerging extraction technique as the technique involves shorter period of
extraction, high efficiency and most importantly uses green and environmentally
friendly solvent (water). In this preliminary experiment, different process conditions of SWE include temperature (156 – 274 °C),
biomass loading (33 – 117 g/L) and retention time (6.6 – 23.4 minutes) were
investigated on microalga, Nannochloropsis gaditana. The maximum yields
of lipid and eicosapentaenoic acid (EPA) extracted were 17.86 wt.% of biomass
and 15.78 wt.% of total fatty acid methyl ester (FAME), respectively. This
productivity level (~16 wt.%) which is in keeping or higher than that of
current production systems endorses SWE as a promising extraction technique for
microalgal EPA production. Future works on optimization of SWE parameters will
be performed to achieve the highest EPA concentration.
Keywords: eicosapentaenoic acid, green extraction,
microalgae, omega-3, sub-critical
Abstrak
Mikroalga
telah digunakan secara menyeluruh menghasilkan bahan api bio kerana ia
mempunyai kadar kepekatan minyak yang tinggi. Bagaimanapun, tarikan semasa
tertumpu pada penukaran minyak untuk menghasilkan produk berharga seperti
omega-3. Banyak jenis mikroalga adalah kaya dengan omega-3. Oleh sebab itu,
kaedah pengekstrakan yang mapan dan efisien diperlukan untuk menjamin daya maju
mikroalga dalam penghasilan omega-3. Kaedah pengekstrakan air sub-kritikal
(SWE) merupakan kaedah baru yang memerlukan masa pengekstrakan yang pendek,
efisien dan menggunakan air sahaja sebagai pelarut. Dalam eksperimen awal ini,
keadaan proses yang berbeza termasuk suhu (156 – 274 °C), muatan biojisim (33 –
117 g/L) dan tempoh pengekstrakan (6.6 – 23.4 minit) telah dikaji dengan
menggunakan mikroalga, Nannochloropsis gaditana. Kadar maksimum minyak
dan asid eikosapentaenoik (EPA) di ekstrak
masing-masing ialah 17.86 wt.% daripada jumlah biojisim dan 15.78 wt.% daripada
jumlah asid lemak metil ester (FAME). Kadar pengekstrakan yang tinggi ini (~16
wt.%) berbanding dengan kaedah semasa menunjukkan bahawa SWE ini ialah kaedah pengekstrakan
yang mempunyai harapan untuk menghasilkan EPA daripada mikroalga pada masa
hadapan. Pengoptimuman bagi parameter SWE untuk mendapatkan kadar kepekatan EPA
yang paling tinggi akan dilakukan pada masa hadapan.
Kata kunci: asid eikosapentaenoik, pengekstrakan hijau, mikroalga, omega-3, sub-kritikal
References
1.
Dyall, S. C. (2015). Long-chain omega-3 fatty acids
and the brain: A review of the independent and shared effects of EPA, DPA and
DHA. Frontiers in Aging Neuroscience, 7(52): 1-15.
2.
Kastelein, J. J. P., Maki, K. C., Susekov, A.,
Ezhov, M., Nordestgaard, B. G., Machielse, B. N., Kling, D. and Davidson, M. H.
(2014). Omega-3 Free Fatty Acids for the Treatment of Severe
Hypertriglyceridemia: The EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE)
trial. Journal of Clinical Lipidology, 8 (1): 94-106.
3.
Maki, K. C., Orloff, D. G., Nicholls, S. J., Dunbar,
R. L., Roth, E. M., Curcio, D., Johnson, J., Kling, D. and Davidson, M. H.
(2013). A highly bioavailable omega-3 free fatty acid formulation improves the
cardiovascular risk profile in high-risk, statin-treated patients with residual
hypertriglyceridemia (the ESPRIT Trial). Clinical Therapeutics, 35 (9):
1400-1411.
4.
Wall, R., Ross, R. P., Fitzgerald, G. F. and
Stanton, C. (2010). Fatty acids from fish: The anti-inflammatory potential of
long-chain omega-3 fatty acids. Nutrition Reviews, 68 (5): 280-289.
5.
Weylandt, K. H., Chiu, C. Y., Gomolka, B., Waechter,
S. F. and Wiedenmann, B. (2012). Omega-3 fatty acids and their lipid mediators:
Towards an understanding of resolvin and protectin formation. Prostaglandins
and Other Lipid Mediators, 97(3): 73-82.
6.
Mandal, C. C., Ghosh-Choudhury, T., Yoneda, T.,
Choudhury, G. G. and Ghosh-Choudhury, N. (2010). Fish oil prevents breast
cancer cell metastasis to bone. Biochemical and Biophysical Research
Communications, 402(4): 602-607.
7.
Murphy, R. A., Mourtzakis, M., Chu, Q. S., Baracos,
V. E., Reiman, T. and Mazurak, V. C. (2011). Nutritional intervention with fish
oil provides a benefit over standard of care for weight and skeletal muscle
mass in patients with non-small cell lung cancer receiving chemotherapy. Cancer,
117(8): 1775-1782.
8.
Swanson, D., Block, R. and Mousa, S. A. (2012).
Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances
in Nutrition: An International Review Journal, 3(1): 1-7.
9.
Turchini, G. M., Nichols, P. D., Barrow, C. and
Sinclair, A. J. (2012). Jumping on the omega-3 Bandwagon: Distinguishing the
role of long-chain and short-chain omega-3 fatty acids. Critical Reviews in Food
Science and Nutrition, 52(9): 795-803.
10.
Dawczynski, C., Martin, L., Wagner, A. and Jahreis,
G. (2010). N-3 LC-PUFA-enriched dairy products are able to reduce
cardiovascular risk factors: a double-blind, cross-over study. Clinical
Nutrition, 29(5): 592-599.
11.
Tur, J. A., Bibiloni, M.
M., Sureda, A. and Pons, A. (2012). Dietary sources of omega 3 fatty acids:
public health risks and benefits. British Journal of Nutrition, 107(Supplement
2): S23-52.
12.
Zhou, W., Min, M., Li,
Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P. and Ruan, R. (2012). A
hetero-photoautotrophic two-stage cultivation process to improve wastewater
nutrient removal and enhance algal lipid accumulation. Bioresource
Technology, 110: 448-455.
13.
Talebi, A. F.,
Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini,
M., Hadavand Mirzaei, H., Mirzajanzadeh, M., Malekzadeh Shafaroudi, S. and
Bakhtiari, S. (2013). Fatty acids profiling: A selective criterion for
screening microalgae strains for biodiesel production. Algal Research, 2(3):
258-267.
14.
Griffiths, M. J., van
Hille, R. P. and Harrison, S. T. L. (2012). Lipid productivity, settling
potential and fatty acid profile of 11 microalgal species grown under nitrogen
replete and limited conditions. Journal of Applied Phycology, 24(5):
989-1001.
15.
Arterburn, L. M., Oken,
H. A., Bailey Hall, E., Hamersley, J., Kuratko, C. N. and Hoffman, J. P.
(2008). Algal-oil capsules and cooked salmon: nutritionally equivalent sources
of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7):
1204-1209.
16.
Adarme-Vega, T. C., Lim,
D. K. Y., Timmins, M., Vernen, F., Li, Y. and Schenk, P. M. (2012). Microalgal
biofactories: A promising approach towards sustainable omega-3 fatty acid production.
Microbial Cell Factories, 11(1): 96.
17.
Treyvaud Amiguet, V.,
Kramp, K. L., Mao, J., McRae, C., Goulah, A., Kimpe, L. E., Blais, J. M. and
Arnason, J. T. (2012). Supercritical carbon dioxide extraction of
polyunsaturated fatty acids from northern shrimp (Pandalus borealis
kreyer) processing by-products. Food Chemistry, 130(4): 853-858.
18.
Reddy, H. K., Muppaneni,
T., Sun, Y., Li, Y., Ponnusamy, S., Patil, P. D., Dailey, P., Schaub, T.,
Holguin, F. O., Dungan, B., Cooke, P., Lammers, P., Voorhies, W., Lu, X. and
Deng, S. (2014). Subcritical water extraction of lipids from wet algae for
biodiesel production. Fuel, 133: 73-81.
19.
Griffiths, M. J., van
Hille, R. P. and Harrison, S. T. (2010). Selection of direct
transesterification as the preferred method for assay of fatty acid content of
microalgae. Lipids, 45(11): 1053-1060.
20.
Brunner, G. (2009). Near
critical and supercritical water. part I. hydrolytic and hydrothermal
processes. The Journal of Supercritical Fluids, 47(3): 373-381.
21.
Lu, Y., Levine, R. B. and
Savage, P. E. (2015). Fatty acids for nutraceuticals and biofuels from
hydrothermal carbonization of microalgae. Industrial & Engineering
Chemistry Research, 54(16): 4066-4071.
22.
Toor, S. S., Rosendahl,
L. and Rudolf, A. (2011). hydrothermal liquefaction of biomass: A review of
subcritical water technologies. Energy, 36(5): 2328-2342.
23.
Horwitz, W. (1990).
Official methods of analysis of AOAC international. AOAC International, USA.
24.
Ryckebosch, E., Bruneel,
C., Termote-Verhalle, R., Goiris, K., Muylaert, K. and Foubert, I. (2014).
Nutritional evaluation of microalgae oils rich in omega-3 long chain
polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry,
160: 393-400.
25.
Akhtar, J. and Amin, N.
A. S. (2011). A review on process conditions for optimum bio-oil yield in
hydrothermal liquefaction of biomass. Renewable and Sustainable Energy
Reviews, 15(3): 1615-1624.
26.
Milledge, J. J. and
Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel
production. Reviews in Environmental Science and Bio/Technology, 12(2):
165-178.
27.
Kolanowski, W., Jaworska,
D. and Weißbrodt, J. (2007). Importance of instrumental and sensory analysis in
the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated
fatty acid-rich foods. Journal of the Science of Food and Agriculture, 87(2):
181-191.