Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 612 - 618
DOI:
10.17576/mjas-2018-2204-06
PHYSICOCHEMICAL PROPERTIES
OF ENCAPSULATED PURPLE SWEET POTATO EXTRACT; EFFECT OF MALTODEXTRIN
CONCENTRATION, AND MICROWAVE DRYING POWER
(Sifat Fizikokimia Ekstrak Keledek Ungu yang Dikapsul;
Kesan Kepekatan Maltodekstrin, dan Kuasa Pengeringan Gelombang Mikro)
Alyani Mohd Padzil1*, Azni A. Aziz1, Ida
Idayu Muhamad1, 2
1Bioprocess and Polymer Engineering Department,
Faculty of Chemical and Energy Engineering
2IJN-UTM
Cardiovascular Engineering Center Level 2, Block B, Building V01, Faculty of
Biomedical Engineering
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
*Corresponding
author: mpr.alyani@gmail.com
Received: 16
April 2017; Accepted: 7 March 2018
Purple sweet potato (PSP) is rich with anthocyanin and has a great
potential as natural food colorant. In this study, investigation on the effect
of maltodextrin (MD, DE 4.0–7.0) concentration as wall material and various
microwave drying powers towards physicochemical properties of microwave
assisted encapsulation of purple sweet potato extract (PSPE) has been
conducted. The effects of microwave power (550 W and 330W) and MD concentration
(20%, 25%, and 30%) were analysed for moisture content, water activity, colour,
and total monomeric anthocyanin content (TMA). Both moisture content and water
activity of the encapsulated PSPE were significantly decreased (p <0.05) as
the MD concentration increased at 20% and 30%. With respect of anthocyanin
content, increasing of MD concentration at 20% and 30% showed a statistically
significant reduction (p < 0.05). PSPA with 20% concentration gave the
highest TMA at both microwave drying power of 330 W and 550 W, with
385.93±10.81 mg/L and 419.28±10.89 mg/L respectively. However, moisture
content, water activity, colour, and TMA were not significantly different with
the changing of microwave drying power.
Keywords: purple sweet
potato, anthocyanin, microwave-assisted encapsulation, natural colorants, maltodextrin
Abstrak
Ubi keledek
ungu (PSP) kaya dengan antosianin dan berpotensi untuk digunakan sebagai
pewarna makanan semula jadi. Dalam kajian ini, kajian tentang kesan kepekatan
maltodekstrin (MD, DE 4,0-7,0) sebagai bahan pengkapsulan dan pelbagai kuasa
gelombang mikro pengeringan terhadap sifat fizikokimia ekstrak keledek ungu
yang dikapsul telah dijalankan. Kesan kuasa gelombang mikro pengeringan (550 W
dan 330W) dan kepekatan maltodekstrin (MD) (20%, 25%, dan 30%) dianalisis untuk
kandungan kelembapan, aktiviti air, warna, dan jumlah kandungan antosianin
monomerik (TMA). Nilai kandungan kelembapan dan aktiviti air daripada ektsrak
keledek ungu yang dikapsulkan ketara berkurangan (p <0.05) dengan
peningkatan kepekatan MD pada 20% dan 30%. Peningkatan kepekatan MD pada 20%
dan 30% menunjukkan pengurangan TMA secara signifikan (p <0.05). PSPA dengan
20% kepekatan MD menunjukkan kandungan tertinggi TMA pada kedua-dua kuasa
pengeringan ketuhar mikro 330 W dan 550 W, dengan masing-masing 38593 ± 10.81
mg/L dan 41928 ± 10.89 mg/L. Walau bagaimanapun, kandungan kelembapan, aktiviti
air, warna, dan kandungan TMA tidak berbeza signifikan dengan perubahan kuasa
pengeringan ketuhar gelombang mikro.
Kata kunci: keledek
ungu, antosianin, pengkapsulan dengan bantuan gelombang mikro, pewarna
semulajadi, maltodekstrin
References
1.
Ahmed, M., Akter, M. S. and Eun, J. B. (2010). Impact of
α-amylase and maltodextrin on physicochemical, functional and antioxidant
capacity of spray-dried purple sweet potato flour. Journal of the Science of
Food and Agriculture, 90(3): 494-502.
2.
Aishah, B., Nursabrina, M., Noriham, A., Norizzah, A. R. and
Mohamad Shahrimi, H. (2013). Anthocyanins from Hibiscus sabdariffa, Melastoma
malabathricum and Ipomoea batatas
and its color properties. International
Food Research Journal, 20(2): 827-834.
3.
Li, J., Li, X. D., Zhang, Y., Zheng, Z. D., Qu, Z. Y., Liu,
M., Zhu, S. H., Liu, S., Wang, M. and Qu, L. (2013). Identification and thermal
stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with
various pH values and fruit juices. Food Chemistry, 136(3): 1429-1434.
4.
Choi, I., Lee, J. Y., Lacroix, M. and Han, J. (2017).
Intelligent pH indicator film composed of agar/potato starch and anthocyanin
extracts from purple sweet potato. Food Chemistry, 218 (Supplement C):
122-128.
5.
Zaidel, D. N. A., Aqilah, N. and Mohd, Y. M. (2015).
Efficiency and thermal stability of encapsulated anthocyanins from red dragon
fruit (Hylocereus polyrhizus (Weber)
Britton & Rose ) using microwave-assisted technique. Chemical Engineering Transactions, 43: 127-132.
6.
Mohd Nawi, N., Muhamad, I. I. and Mohd Marsin, A. (2015). The
physicochemical properties of microwave-assisted encapsulated anthocyanins from
Ipomoea Batatas as affected by
different wall materials. Food Science and Nutrition, 3(2): 91-99.
7.
Haghi, A. K. and Amanifard, N. (2008). Analysis of heat and
mass transfer during microwave drying of food products. Brazilian Journal of
Chemical Engineering, 25: 491-501.
8.
Ahmed, M., Akter, M. S., Lee, J. C. and Eun, J. B. (2010).
Encapsulation by spray drying of bioactive components, physicochemical and
morphological properties from purple sweet potato. LWT - Food Science and
Technology, 43(9): 1307-1312.
9.
Peng, Z., Li, J., Guan, Y. and Zhao, G. (2013). Effect of
carriers on physicochemical properties, antioxidant activities and biological
components of spray-dried purple sweet potato flours. LWT - Food Science and
Technology, 51(1): 348-355.
10.
Quek, S. Y., Chok, N. K. and Swedlund, P. (2007). The
physicochemical properties of spray-dried watermelon powders. Chemical
Engineering and Processing: Process Intensification, 46(5): 386-392.
11.
Giusti, M. M. and Wrolstad, R. E. (2001). Characterization
and measurement of anthocyanins by UV-visible spectroscopy. Current
Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc,
Hoboken, USA.
12.
Caliskan, G. and Dirim, S. N. (2016). The effect of different
drying processes and the amounts of maltodextrin addition on the powder
properties of sumac extract powders. Powder Technology, 287 (Supplement
C): 308-314.