Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 648 - 658
DOI:
10.17576/mjas-2018-2204-11
SYNERGISTIC
EFFECT OF ADSORPTION-PHOTODEGRADATION OF COMPOSITE TiO2/AC FOR
DEGRADATION OF
1-BUTYL-3-METHYLIMIDAZOLIUM
CHLORIDE
(Kesan Sinergistik Penjerapan-Fotopenguraian dari Bahan
Komposit TiO2/AC untuk Mengurai 1-Butil-3-Metillimidazolium Klorida)
Azhar Zawawi, Raihan Mahirah Ramli*, Noorfidza Yub Harun
Chemical
Engineering Department,
Universiti
Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
*Corresponding
author: raihan.ramli@utp.edu.my
Received: 16
April 2017; Accepted: 7 March 2018
Abstract
Most ionic liquids (ILs) were reported
to be highly toxic and non-biodegradable such as ILs with imidazolium type
cation. To overcome this problem, degradation of imidazolium based ILs via
advance oxidation process is needed. In this research, photocatalytic study was
employed in order to study the efficiency of the system for removal of ILs from
wastewater. To introduce synergistic effect of adsorption-photodegradation,
composite photocatalyst TiO2/AC was synthesized using two steps (1)
nano-TiO2 was synthesized using microemulsion method and (2) it
deposited onto functionalize (AC) activated carbon using impregnation method.
The prepared composite photocatalyst was characterized using Thermo Gravimetric
Analyzer (TGA), Brunauer-Emmet-Teller (BET) and Field Emission Scanning Electron
Microscopic (FESEM). Photocatalytic study of 1-butyl-3-methylimidazolium
chloride (bmimCl) was employed under visible light region. Increasing amount of
AC as support increased the degradation rate of bmimCl. However, excess AC
reduced the removal rate of bmimCl. Composite TiO2/AC with 10 wt.%
AC as support shows highest degradation rate with total removal 18.47%.
Composite photocatalyst may enhance the diffusion rate between bmimCl and TiO2
surface which increase the efficiency for overall systems.
Keywords:
photodegradation, TiO2, ionic
liquid, activated carbon, synergistic
Abstrak
Penggunaan
cecair ionik (ILs) dilaporkan sebagai sangat toksik dan tidak biodegradasi.
Oleh itu, penguraian ILs dengan melalui proses pengoksidaan amat diperlukan.
Dalam kajian ini, sistem fotopemangkin telah dilaksanakan untuk mengkaji
kecekapan sistem ini dalam menyingkirkan ILs daripada air sisa. Komposit
fotopemangkin TiO2/AC telah dihasilkan untuk mencetuskan kesan
sinergistik penjerapan-fotopenguraian untuk mengurai Ils melalui dua langkah
(1) nano-TiO2 telah dihasilkan melalui kaedah mikroemulsi dan (2) dicampurkan
bersama karbon yang diaktifkan melalui kaedah pengisitepuan. Komposit
fotopemangkin yang dihasilkan telah dihantar untuk proses pencirian bagi
mengkaji ciri-ciri fizikal dan kimia fotopemangkin seperti analisis gravimetrik
termo (TGA), Brenaeur-Emmet-Teller (BET) dan mikroskopi elektron pancaran medan
(FESEM). Kajian fotopenguraian 1-butil-3-metilimidazolium klorida (bmimCl)
sebagai rujukan ILs telah dilaksanakan di bawah sinar nampak. Penambahan
bilangan AC sebagai sokongan telah meningkatkan kadar penguraian bmimCl. Walau
bagaimanapun, sekiranya AC yang digunakan sebagai sokongan terlalu banyak,
ianya telah mengurangkan kadar penguraian bmimCl. Komposit TiO2/AC
dengan bilangan 10 wt.% AC sebagai sokongan telah menunjukkan kadar penguraian
yang paling tinggi. Komposit fotopemangkin akan meningkatkan kadar penyebaran
antaran bmimCl and permukaan TiO2 yang mana akan meningkatkan
kecekapan sistem secara keseluruhannya.
Kata kunci: fotopenguraian,
TiO2, cecair ionik, karbon aktif, sinergistik
References
1. Olivier-Bourbigou,
H., Magna, L. and Morvan, D. (2010). Ionic liquids and catalysis: Recent
progress from knowledge to applications. Applied Catalysis A: General, 373(1-2): 1-56.
2. Pham,
T. P., Cho, C. W. and Yun, Y. S. (2010). Environmental fate and toxicity of
ionic liquids: A review. Water Research,
44(2): 352-372.
3. Siedlecka,
E. M., Fabiańska, A., Stolte, S., Nienstedt, A., Ossowski, T., Stepnowski P.
and Thöming, J. (2013). Electrocatalytic oxidation of
1-butyl-3-methylimidazolium chloride: Effect of the electrode material. International Journal of Electrochemical
Science, 8(1): 5560-5574.
4. Munoz,
M., Domínguez, C. M., de Pedro, Z. M., Quintanilla, A., Casas, J. A. and
Rodriguez, J. J. (2015). Ionic liquids breakdown by fenton oxidation. Catalysis
Today, 240(1): 16-21.
5. Zhou,
H., Shen, Y., Lv, P., Wang, J. and Li, P. (2015). Degradation pathway and
kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic
nanoscale zero-valent iron/hydrogen peroxide system. Journal of Hazardous
Materials, 284(1): 241-252.
6. Ramli,
R. M., Chong, F. K. and Omar, A. A. (2013). Visible-light photodegradation of diisopropanolamine
using bimetallic Cu-Fe/TiO2 photocatalyst. Advanced Materials Research, 176(1): 451-458.
7. Saepurahman,
Abdullah, M. A. and Chong, F. K. (2010). Preparation and characterization of
tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. Journal
of Hazardous Materials, 176(1-3):
451-458.
8. Ramli,
R. M., Kait, C. F. and Omar, A. A. (2014). Photodegradation of aqueous
diisopropanolamine using Cu/TiO2: Effect of calcination temperature
and duration. Applied Mechanics and Materials,
625(1): 847-850.
9. Orha,
C., Pode, R., Manea, F., Lazau, C. and Bandas, C. (2017). Titanium
dioxide-modified activated carbon for advanced drinking water treatment. Process
Safety and Environmental Protection, 108(1):
26-33.
10. Stepnowski,
P., & Zaleska, A. (2005). Comparison of different advanced oxidation
processes for the degradation of room temperature ionic liquids. Journal of
Photochemistry and Photobiology A: Chemistry, 170(1): 45-50.
11. Ramli,
R. M., Kait, C. F. and Omar, A. A. (2016). Remediation of DIPA contaminated
wastewater using visible light active bimetallic Cu-Fe/TiO2 photocatalyst. Procedia
Engineering, 148(1): 508-515.
12. Altın,
İ., Sökmen, M. and Bıyıklıoğlu, Z. (2016). Sol gel synthesis of cobalt doped
TiO2 and its dye sensitization for efficient pollutant removal. Materials
Science in Semiconductor Processing, 45(1):
36-44.
13. Mohd
Zaid, H. F., Chong, F. K. and Abdul Mutalib, M. I. (2015).
Photooxidative–extractive deep desulfurization of diesel using Cu–Fe/TiO2
and eutectic ionic liquid. Fuel, 156(1):
54-62.
14. Al-Doghachi,
F. A. J., Rashid, U. and Taufiq-Yap Y. H. (2016). Investigation of Ce(III)
promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming
of methane. RSC Advances, 6(1):
10372-10384.
15. Ho Kim,
B., Reon Kim, B. and Seo, Y. G. (2005). A study on adsorption equilibrium for
oxygen and nitrogen into carbon nanotubes. Adsorption, 11(1): 207-212.
16. Ouzzine,
M., Romero-Anaya, A. J., Lillo-Ródenas, M. A. and Linares-Solano, A. (2014).
Spherical activated carbon as an enhanced support for TiO2/AC
photocatalysts. Carbon, 67(1): 104-118.
17. Ganesh,
I., Kumar, P. P., Annapoorna, I., Sumliner, J. M., Ramakrishna, M., Hebalkar,
N. Y., Padmanabham, G. and Sundararajan, G. (2014). Preparation and characterization
of Cu-Doped TiO2 materials for electrochemical,
photoelectrochemical, and photocatalytic applications. Applied Surface
Science, 293(1): 229-247.
18. Rittner,
F., Boddenberg, B., Fink, R. F. and Staemmler, V. (1999). Adsorption of
nitrogen on rutile(110). 2. construction of a full five-dimensional potential
energy surface. Langmuir, 15(4): 1449-1455.
19. Eliyas,
A., Ljutzkanov, L., Stambolova, I., Blaskov, V., Vassilev, S.,
Razkazova-Velkova, E. and Mehandjiev, D. (2013). Visible light photocatalytic
activity of TiO2 deposited on activated carbon. Open Chemistry, 11(3): 464-470.
20. Xing,
B., Shi, C., Zhang, C., Yi, G., Chen, L., Guo, H., Huang, G. and Cao, J.
(2016). Preparation of TiO2/activated carbon composites for
photocatalytic degradation of RhB under UV light irradiation. Journal of
Nanomaterials, 2016(1): 1-10.
21. Jamil,
T. S., Ghaly, M. Y., Fathy, N. A., Abd el-halim, T. A. and Österlund, L.
(2012). Enhancement of TiO2 behavior on photocatalytic oxidation of
MO dye using TiO2/AC under visible irradiation and sunlight
radiation. Separation and Purification Technology, 98(1): 270-279.
22. Raj, K.
J. A. and Viswanathan, B. (2009). Effect of surface area, pore volume and
particle size of P25 titania on the phase transformation of anatase to rutile. Indian Journal of Chemistry, 48(10):
1378-1382.
23. Slimen,
H., Houas, A. and Nogier, J. P. (2011). Elaboration of stable anatase TiO2
through activated carbon addition with high photocatalytic activity under
visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1):
13-21.
24. Lemus,
J., Neves, C. M. S. S., Marques, C. F. C., Freire, M. G., Coutinho, J. A. P.
and Palomar, J. (2013). Composition and structural effects on the adsorption of
ionic liquids onto activated carbon. Environmental Science: Processes &
Impacts, 15(9): 1752-1759.
25. Maneerung,
T., Liew, J., Dai, Y., Kawi, S., Chong, C. and Wang, C. H. (2016). Activated
carbon derived from carbon residue from biomass gasification and its
application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource
Technology, 200(1): 350-359.
26. Huang,
D., Miyamoto, Y., Matsumoto, T., Tojo, T., Fan, T., Ding, J., Guo, Q. and
Zhang, D. (2011). Preparation and characterization of high-surface-area TiO2/activated
carbon by low-temperature impregnation. Separation and Purification Technology,
78(1): 9-15.
27. Zhou,
W., Zhang, P. and Liu, W. (2012). Anatase TiO2 nanospindle/activated
carbon (AC) composite photocatalysts with enhanced activity in removal of
organic contaminant. International Journal of Photoenergy, 2012: 1-7.
28. Li, Y.,
Zhou, X., Chen, W., Li, L., Zen, M., Qin, S. and Sun, S. (2012).
Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated
carbon under visible-light irradiation. Journal of Hazardous Materials, 227-228
(1): 25-33.
29. Sun,
Z., He, X., Du, J. and Gong, W. (2016). Synergistic effect of photocatalysis
and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated
carbon composite. Environmental Science and Pollution Research, 23(21):
21733-21740.
30. Alkaim,
A. F., Kandiel, T. A., Hussein, F. H., Dillert, R. and Bahnemann, D. W. (2013).
Enhancing the photocatalytic activity of TiO2 by pH Control: A case
study for the degradation of EDTA. Catalysis Science & Technology, 3
(12): 3216-3222.
31. Siedlecka,
E. M., Fabiańska, A., Stolte, S., Nienstedt, A., Ossowski, T., Stepnowski P.
and Thöming, J. (2013). Electrocatalytic oxidation of 1-butyl-3-methylimidazolium
chloride: Effect of the electrode material. International
Journal of Electrochemical Science, 8(1): 5560-5574.
32. Ramli,
R. M., Kait, C. F. and Omar, A. A. (2014). Photocatalytic degradation of
diisopropanolamine in heterogeneous photo-fenton system. Advanced Materials Research, 917(1): 160-167.
33. Pieczyńska,
A., Ofiarska, A., Borzyszkowska, A. F., Białk-Bielińska, A., Stepnowski, P.,
Stolte, S. and Siedlecka, E. M. (2015). A comparative study of electrochemical
degradation of imidazolium and pyridinium ionic liquids: A reaction pathway and
ecotoxicity evaluation. Separation and Purification Technology, 156
(Part 2): 522-534.
34. Fabiańska,
A., Ossowski, T., Bogdanowicz, R., Czupryniak, J., Gnyba, M., Odzga, T.,
Janssens, S. D., Haenen, K. and Siedlecka, E. M. (2012). Electrochemical
oxidation of ionic liquids at highly boron doped diamond electrodes. Physica
Status Solidi (A), 209(9): 1797-1803.
35. Siedlecka,
E. M., Gołębiowski, M., Kaczyński, Z., Czupryniak, J., Ossowski, T. and
Stepnowski, P. (2009). Degradation of ionic liquids by fenton reaction; The
effect of anions as counter and background ions. Applied Catalysis B:
Environmental, 91(1-2): 573-579.
36. Siedlecka,
E. M., Mrozik, W., Kaczyński, Z. and Stepnowski, P. (2008). Degradation of
1-butyl-3-methylimidazolium chloride ionic liquid in a fenton-like system. Journal
of Hazardous Materials, 154(1): 893-900.
37. Siedlecka,
E. M., Goêbiowski, M., Kumirska, J. and Stepnowski, P. (2008). Identification
of 1-butyl-3-methylimidazolium chloride degradation products formed in
Fe(III)/H2O2 oxidation system. Journal of Analytical Chemistry, 53(1): 943-951.
38. Czerwicka,
M., Stolte, S., Müller, A., Siedlecka, E. M., Gołębiowski, M., Kumirska, J. and
Stepnowski, P. (2009). Identification of ionic liquid breakdown products in an
advanced oxidation system. Journal of Hazardous Materials, 171(1): 478-483.