Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 648 - 658

DOI: 10.17576/mjas-2018-2204-11

 

 

 

SYNERGISTIC EFFECT OF ADSORPTION-PHOTODEGRADATION OF COMPOSITE TiO2/AC FOR DEGRADATION OF

1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

 

(Kesan Sinergistik Penjerapan-Fotopenguraian dari Bahan Komposit TiO2/AC untuk Mengurai 1-Butil-3-Metillimidazolium Klorida)

 

Azhar Zawawi, Raihan Mahirah Ramli*, Noorfidza Yub Harun

 

Chemical Engineering Department,

Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia

 

*Corresponding author: raihan.ramli@utp.edu.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Most ionic liquids (ILs) were reported to be highly toxic and non-biodegradable such as ILs with imidazolium type cation. To overcome this problem, degradation of imidazolium based ILs via advance oxidation process is needed. In this research, photocatalytic study was employed in order to study the efficiency of the system for removal of ILs from wastewater. To introduce synergistic effect of adsorption-photodegradation, composite photocatalyst TiO2/AC was synthesized using two steps (1) nano-TiO2 was synthesized using microemulsion method and (2) it deposited onto functionalize (AC) activated carbon using impregnation method. The prepared composite photocatalyst was characterized using Thermo Gravimetric Analyzer (TGA), Brunauer-Emmet-Teller (BET) and Field Emission Scanning Electron Microscopic (FESEM). Photocatalytic study of 1-butyl-3-methylimidazolium chloride (bmimCl) was employed under visible light region. Increasing amount of AC as support increased the degradation rate of bmimCl. However, excess AC reduced the removal rate of bmimCl. Composite TiO2/AC with 10 wt.% AC as support shows highest degradation rate with total removal 18.47%. Composite photocatalyst may enhance the diffusion rate between bmimCl and TiO2 surface which increase the efficiency for overall systems.

 

Keywords:  photodegradation, TiO2, ionic liquid, activated carbon, synergistic

 

Abstrak

Penggunaan cecair ionik (ILs) dilaporkan sebagai sangat toksik dan tidak biodegradasi. Oleh itu, penguraian ILs dengan melalui proses pengoksidaan amat diperlukan. Dalam kajian ini, sistem fotopemangkin telah dilaksanakan untuk mengkaji kecekapan sistem ini dalam menyingkirkan ILs daripada air sisa. Komposit fotopemangkin TiO2/AC telah dihasilkan untuk mencetuskan kesan sinergistik penjerapan-fotopenguraian untuk mengurai Ils melalui dua langkah (1) nano-TiO2 telah dihasilkan melalui kaedah mikroemulsi dan (2) dicampurkan bersama karbon yang diaktifkan melalui kaedah pengisitepuan. Komposit fotopemangkin yang dihasilkan telah dihantar untuk proses pencirian bagi mengkaji ciri-ciri fizikal dan kimia fotopemangkin seperti analisis gravimetrik termo (TGA), Brenaeur-Emmet-Teller (BET) dan mikroskopi elektron pancaran medan (FESEM). Kajian fotopenguraian 1-butil-3-metilimidazolium klorida (bmimCl) sebagai rujukan ILs telah dilaksanakan di bawah sinar nampak. Penambahan bilangan AC sebagai sokongan telah meningkatkan kadar penguraian bmimCl. Walau bagaimanapun, sekiranya AC yang digunakan sebagai sokongan terlalu banyak, ianya telah mengurangkan kadar penguraian bmimCl. Komposit TiO2/AC dengan bilangan 10 wt.% AC sebagai sokongan telah menunjukkan kadar penguraian yang paling tinggi. Komposit fotopemangkin akan meningkatkan kadar penyebaran antaran bmimCl and permukaan TiO2 yang mana akan meningkatkan kecekapan sistem secara keseluruhannya.

 

Kata kunci:  fotopenguraian, TiO2, cecair ionik, karbon aktif, sinergistik

 

References

1.       Olivier-Bourbigou, H., Magna, L. and Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373(1-2): 1-56.

2.       Pham, T. P., Cho, C. W. and Yun, Y. S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research, 44(2): 352-372.

3.       Siedlecka, E. M., Fabiańska, A., Stolte, S., Nienstedt, A., Ossowski, T., Stepnowski P. and Thöming, J. (2013). Electrocatalytic oxidation of 1-butyl-3-methylimidazolium chloride: Effect of the electrode material. International Journal of Electrochemical Science, 8(1): 5560-5574.

4.       Munoz, M., Domínguez, C. M., de Pedro, Z. M., Quintanilla, A., Casas, J. A. and Rodriguez, J. J. (2015). Ionic liquids breakdown by fenton oxidation. Catalysis Today, 240(1): 16-21.

5.       Zhou, H., Shen, Y., Lv, P., Wang, J. and Li, P. (2015). Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system. Journal of Hazardous Materials, 284(1): 241-252.

6.       Ramli, R. M., Chong, F. K. and Omar, A. A. (2013). Visible-light photodegradation of diisopropanolamine using bimetallic Cu-Fe/TiO2 photocatalyst. Advanced Materials Research, 176(1): 451-458.

7.       Saepurahman, Abdullah, M. A. and Chong, F. K. (2010). Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. Journal of Hazardous Materials, 176(1-3): 451-458.

8.       Ramli, R. M., Kait, C. F. and Omar, A. A. (2014). Photodegradation of aqueous diisopropanolamine using Cu/TiO2: Effect of calcination temperature and duration. Applied Mechanics and Materials, 625(1): 847-850.

9.       Orha, C., Pode, R., Manea, F., Lazau, C. and Bandas, C. (2017). Titanium dioxide-modified activated carbon for advanced drinking water treatment. Process Safety and Environmental Protection, 108(1): 26-33.

10.    Stepnowski, P., & Zaleska, A. (2005). Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry, 170(1): 45-50.

11.    Ramli, R. M., Kait, C. F. and Omar, A. A. (2016). Remediation of DIPA contaminated wastewater using visible light active bimetallic Cu-Fe/TiO2 photocatalyst. Procedia Engineering, 148(1): 508-515.

12.    Altın, İ., Sökmen, M. and Bıyıklıoğlu, Z. (2016). Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Materials Science in Semiconductor Processing, 45(1): 36-44.

13.    Mohd Zaid, H. F., Chong, F. K. and Abdul Mutalib, M. I. (2015). Photooxidative–extractive deep desulfurization of diesel using Cu–Fe/TiO2 and eutectic ionic liquid. Fuel, 156(1): 54-62.

14.    Al-Doghachi, F. A. J., Rashid, U. and Taufiq-Yap Y. H. (2016). Investigation of Ce(III) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming of methane. RSC Advances, 6(1): 10372-10384.

15.    Ho Kim, B., Reon Kim, B. and Seo, Y. G. (2005). A study on adsorption equilibrium for oxygen and nitrogen into carbon nanotubes. Adsorption, 11(1): 207-212.

16.    Ouzzine, M., Romero-Anaya, A. J., Lillo-Ródenas, M. A. and Linares-Solano, A. (2014). Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon, 67(1): 104-118.

17.    Ganesh, I., Kumar, P. P., Annapoorna, I., Sumliner, J. M., Ramakrishna, M., Hebalkar, N. Y., Padmanabham, G. and Sundararajan, G. (2014). Preparation and characterization of Cu-Doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science, 293(1): 229-247.

18.    Rittner, F., Boddenberg, B., Fink, R. F. and Staemmler, V. (1999). Adsorption of nitrogen on rutile(110). 2. construction of a full five-dimensional potential energy surface. Langmuir, 15(4): 1449-1455.

19.    Eliyas, A., Ljutzkanov, L., Stambolova, I., Blaskov, V., Vassilev, S., Razkazova-Velkova, E. and Mehandjiev, D. (2013). Visible light photocatalytic activity of TiO2 deposited on activated carbon. Open Chemistry, 11(3): 464-470.

20.    Xing, B., Shi, C., Zhang, C., Yi, G., Chen, L., Guo, H., Huang, G. and Cao, J. (2016). Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. Journal of Nanomaterials, 2016(1): 1-10.

21.    Jamil, T. S., Ghaly, M. Y., Fathy, N. A., Abd el-halim, T. A. and Österlund, L. (2012). Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Separation and Purification Technology, 98(1): 270-279.

22.    Raj, K. J. A. and Viswanathan, B. (2009). Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian Journal of Chemistry, 48(10): 1378-1382.

23.    Slimen, H., Houas, A. and Nogier, J. P. (2011). Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1): 13-21.

24.    Lemus, J., Neves, C. M. S. S., Marques, C. F. C., Freire, M. G., Coutinho, J. A. P. and Palomar, J. (2013). Composition and structural effects on the adsorption of ionic liquids onto activated carbon. Environmental Science: Processes & Impacts, 15(9): 1752-1759.

25.    Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C. and Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200(1): 350-359.

26.    Huang, D., Miyamoto, Y., Matsumoto, T., Tojo, T., Fan, T., Ding, J., Guo, Q. and Zhang, D. (2011). Preparation and characterization of high-surface-area TiO2/activated carbon by low-temperature impregnation. Separation and Purification Technology, 78(1): 9-15.

27.    Zhou, W., Zhang, P. and Liu, W. (2012). Anatase TiO2 nanospindle/activated carbon (AC) composite photocatalysts with enhanced activity in removal of organic contaminant. International Journal of Photoenergy, 2012: 1-7.

28.    Li, Y., Zhou, X., Chen, W., Li, L., Zen, M., Qin, S. and Sun, S. (2012). Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. Journal of Hazardous Materials, 227-228 (1): 25-33.

29.    Sun, Z., He, X., Du, J. and Gong, W. (2016). Synergistic effect of photocatalysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite. Environmental Science and Pollution Research, 23(21): 21733-21740.

30.    Alkaim, A. F., Kandiel, T. A., Hussein, F. H., Dillert, R. and Bahnemann, D. W. (2013). Enhancing the photocatalytic activity of TiO2 by pH Control: A case study for the degradation of EDTA. Catalysis Science & Technology, 3 (12): 3216-3222.

31.    Siedlecka, E. M., Fabiańska, A., Stolte, S., Nienstedt, A., Ossowski, T., Stepnowski P. and Thöming, J. (2013). Electrocatalytic oxidation of 1-butyl-3-methylimidazolium chloride: Effect of the electrode material. International Journal of Electrochemical Science, 8(1): 5560-5574.

32.    Ramli, R. M., Kait, C. F. and Omar, A. A. (2014). Photocatalytic degradation of diisopropanolamine in heterogeneous photo-fenton system. Advanced Materials Research, 917(1): 160-167.

33.    Pieczyńska, A., Ofiarska, A., Borzyszkowska, A. F., Białk-Bielińska, A., Stepnowski, P., Stolte, S. and Siedlecka, E. M. (2015). A comparative study of electrochemical degradation of imidazolium and pyridinium ionic liquids: A reaction pathway and ecotoxicity evaluation. Separation and Purification Technology, 156 (Part 2): 522-534.

34.    Fabiańska, A., Ossowski, T., Bogdanowicz, R., Czupryniak, J., Gnyba, M., Odzga, T., Janssens, S. D., Haenen, K. and Siedlecka, E. M. (2012). Electrochemical oxidation of ionic liquids at highly boron doped diamond electrodes. Physica Status Solidi (A), 209(9): 1797-1803.

35.    Siedlecka, E. M., Gołębiowski, M., Kaczyński, Z., Czupryniak, J., Ossowski, T. and Stepnowski, P. (2009). Degradation of ionic liquids by fenton reaction; The effect of anions as counter and background ions. Applied Catalysis B: Environmental, 91(1-2): 573-579.

36.    Siedlecka, E. M., Mrozik, W., Kaczyński, Z. and Stepnowski, P. (2008). Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a fenton-like system. Journal of Hazardous Materials, 154(1): 893-900.

37.    Siedlecka, E. M., Goêbiowski, M., Kumirska, J. and Stepnowski, P. (2008). Identification of 1-butyl-3-methylimidazolium chloride degradation products formed in Fe(III)/H2O2 oxidation system. Journal of Analytical Chemistry, 53(1): 943-951.

38.    Czerwicka, M., Stolte, S., Müller, A., Siedlecka, E. M., Gołębiowski, M., Kumirska, J. and Stepnowski, P. (2009). Identification of ionic liquid breakdown products in an advanced oxidation system. Journal of Hazardous Materials, 171(1): 478-483.

 




Previous                    Content                    Next