­Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 416 - 428

DOI: 10.17576/mjas-2018-2203-06

 

 

 

QUANTIFICATION OF GROUNDWATER-DERIVED NUTRIENTS INTO BEACH RIDGE DRAINAGE USING RADON MASS BALANCE MODEL

 

(Kuantifikasi Nutrien Air Bawah Tanah ke Saluran Pematang Pasir dengan Model Keseimbangan Jisim Radon)

 

Nicholas Chia Wei Ng and Seng-Chee Poh*

 

School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  poh@umt.edu.my

 

 

Received: 10 November 2017; Accepted: 22 May 2018

 

 

Abstract

Groundwater discharge can be a significant pathway for dissolved nutrients to surface water and thus can bring forth important implications to the coastal biogeochemical cycles. Discrete sampling of radon concentrations at several locations along an inter-ridge drainage off Setiu Wetlands were carried out to estimate the fluxes of groundwater discharge. The 222Rn mass balance results show that groundwater discharge in the drainage  is estimated to be 6649 m3day-1, made up of ~33% of total water discharge and has contributed 2.88×102 molday-1, 1.23×102 molday-1 and 0.75molday-1 of ammonium-nitrogen, nitrate-nitrogen and nitrite-nitrogen, respectively into the surface water drainage. Strong correlation between radon and ammonium suggested that the source of nutrient in drainage is groundwater-based, derived probably from the nearby damaged or leaking residential septic tanks and from agricultural practices of oil palm plantation.

 

Keywords:  groundwater-surface water interaction, water quality, beach ridge drainage, Setiu, Malaysia

 

Abstrak

Pelepasan air bawah tanah merupakan satu laluan penting untuk nutrien ke air permukaan. Proses ini mampu membawa implikasi  yang penting terhadap kitaran biogeokimia di pesisiran pantai. Pensampelan radon di sepanjang saluran pematang pasir telah dijalankan untuk menentukan kadar pelepasan air bawah tanah. Hasil model keseimbangan jisim 222Rn telah menunjukkan kadar pelepasan air bawah tanah di saluran adalah sebanyak 6649 m3hari-1 dan nilai ini merangkumi ~33% daripada jumlah pelepasan air. Pelepasan air bawah tanah juga menyumbang sebanyak 2.88×102 mol hari-1 amonium-nitrogen, 1.23×102 mol hari-1  nitrit-nitrogen dan 0.75 mol hari-1 dan nitrit-nitrogen ke air permukaan saluran. Kolerasi antara kepekatan radon dan ammonium di saluran juga mencadangkan sumber nutrien berasal dari air bawah tanah yang kemungkinan tercemar oleh sisa pembuangan kumbahan dari kawasan kediaman berdekatan dan rembesan pertanian dari ladang kelapa sawit di sekitarnya.

 

Kata kunci:   interaksi air bawah tanah-air permukaan, kualiti air, saluran pematang pasir, Setiu, Malaysia

 

References

1.       Buddemeier, R. W. (1996). Groundwater discharge in the coastal zone. Ecological Economics, 35(200): 25–33.

Burnett, W. C. Taniguchi, M. and Oberdorfer, J. (2001). Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 46(2), 109–116.

2.       Johnson, A. G., Glenn, C. R., Burnett, W. C., Peterson, R. N. and Lucey, P. G. (2008). Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophysical Research Letters, 35 (15): 1–6.

3.       Lee, Y. W., Hwang, D. W., Kim, G., Lee, W. C. and Oh, H. T. (2009). Nutrient input from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Science of the Total Environment, 407: 3181–3188.

4.       Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M. and Loveless, A. (2006). Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367: 498–543.

5.       Cable, J. E., Burnett, W. C., Chanton, J. P. and Weatherly, G. L. (1996). Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth Planetary Science Letters, 144: 591-604.

6.       Dulaiova, H., Gonneea, M. E., Henderson, P. B. and Charette, M. A. (2008). Geochemical and physical sources of radon variation in a subterranean estuary–implication for groundwater radon activities in submarine groundwater discharge studies. Marine Chemistry, 110, 120–127.

7.       Lerman, A. (1979). Geochemical processes. Wiley-Interscience. New York: p. 481.

8.       Schubert, M., Knoeller, K., Treutler, H.-C., Weiss, H. and Dehnert, J. (2006). 222Rn as a tracer for the estimation of infiltration of surface waters into aquifers, in Radionuclides in the environment Povinec, P. P. and Sanchez-Cabeza,

9.       J. A. (Editor). Radioactivity in the Environment, 8: 326–334.

10.    Burnett, W. C. and Dulaiova, H. (2003). Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69 (1-2): 21–35.

11.    Mullinger, N. J., Binley, A. M., Pates, J. M. and Crook, N. P. (2007). Radon in Chalk streams: Spatial and temporal variation of groundwater sources in the Pang and Lambourn catchments, UK. Journal of Hydrology, 339: 172–182.

12.    Schwartz, M. C. (2003). Significant groundwater input to a coastal plain estuary: Assessment from excess radon. Estuarine, Coastal and Shelf Science, 56: 31–42.

13.    Swarzenski, P.W., Orem, W.H., McPherson, B.F., Baskaran, M. and Wan, Y. (2006). Biogeochemical transport in the Loxahatchee river estuary: the role of submarine groundwater discharge. Marine Chemistry, 101: 248–265.

14.    Santos, I. R. and Eyre, B. D. (2011). Radon tracing of groundwater discharge into an Australian estuary surrounded by coastal acid sulphate soils. Journal Hydrology, 396: 246-257.

15.    Burnett, W. C., Peterson, R. N., Santos, I. R. and Hicks, R. W. (2010). Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. Journal of Hydrology. 380: 298–304.

16.    Peterson, R. N., Burnett, W. C., Dimova, N. and Santos, I. R. (2009). Comparing measurement methods for radium-226 on manganese-fiber. Limnology and Oceanography. 7: 196–205.

17.    Durridge Company Inc. (2014). RAD H2O user manual radon in water accessory.

18.    Baskaran, M. (2016). Radon measurement techniques in: Radon: A tracer for geological, geophysical and geochemical studies. Springer Geochemistry: pp. 15-35.

19.    Dulaiova, H., Peterson, R. N., Burnett, W. C. and Lane-Smith, D. (2005). A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry, 263, 361–365.

20.    Najilah, M., Nadirah, M., Sakri, I. and Shaharom-Harrison, F. (2010). Bacteria associated with wild mud crab (Scylla serrata) from Setiu Malaysia with emphasis on antibiotic resistance. Pakistan Journal of Biological Sciences, 13(6): 293–297.

21.    Suratman, S., Mohd Tahir, N., Jusoh, S. R. and Ariffin, M. M. (2005). Assessment of anthropogenic effects on water quality in Setiu Wetland, Terengganu. Sains Malaysiana, 34: 87–92.

22.    Suratman, S., Hussein, A. N. A. R., Mohd Tahir, N., Latif, M. T., Mostapa, R. and Weston, K. (2016). Seasonal and spatial variability of selected surface water quality parameters in Setiu Wetlands, Terengganu, Malaysia. Sains Malaysiana, 45(4): 551–558.

23.    Rosnan, Y., Mohd, L.H. and Noor, A. M. S. (1995). Grain-size distribution of sediment in the vicinity of Setiu lagoon-estuary system. Pertanika Journal of Tropical Agricultural Science, 18(1): 71–76.

24.    Department of Irrigation and Drainage Malaysia (2016). Flood information. Access from http://infobanjir.water.gov.my/. [Access date on 10 October 2016].

25.    Lee, J-M. and Kim, G. (2006). A simple and rapid method for analyzing radon in coastal and groundwaters using a radon-in-air monitor. Journal of Environmental Radioactivity, 89(3): 219–228.

26.    APHA. (2005). Standard methods for the examination of water and wastewater, 21st edition. American Public Health Association, Washington, DC.

27.    Kim, G., Burnett, W. C., Dulaiova, H., Swarzenski, P. W., Moore, W. S. (2001). Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environmental Science and Technology, 35: 4680–4683.

28.    Corbett, D., Burnett, W., Cable, J. E. and Clark, S. B. (1998). A multiple approach to the determination of radon fluxes from sediments. Journal of Radioanalytical and Nuclear Chemistry, 236: 247–252.

29.    Clever, H. L. (1979). Solubility Data Series. Krypton, Xenon & Radon-Gas solubilities. Pergamon Press, Oxford.

30.    Dulaiova, H., and Burnett, W. C. (2006). Radon loss across the water–air interface (Gulf of Thailand) estimated experimentally from 222Rn-224Ra. Geophysical Research Letters, 33(5): 1–4.

31.    Hamada, H., Sukchan, S. and Putiso, M. (2005). Measurement of 222Rn concentrations in surface water in northern Thailand. Radioisotopes, 54: 315–320.

32.    Fetter, C. W. (1994). Applied hydrogeology (3rd Edition). McMillian, New York.

33.    Charette, M. A. and Buesseler, K.O. (2004). Submarine groundwater discharge of nutrients and copper to an urban sub estuary of Chesapeake Bay (Elizabeth River). Limnology and Oceanography, 49(2), 376–385.

 




Previous                    Content                    Next