Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 404 - 415

DOI: 10.17576/mjas-2018-2203-05

 

 

 

ROOM TEMPERATURE SYNTHESIS OF CERIA BY THE ASSISTED OF CATIONIC SURFACTANT AND AGING TIME

 

(Sintesis Ceria Pada Suhu Bilik Dengan Bantuan Surfaktan Kation Dan Masa Penuaan)

 

Nor Aqilah Mohd Fadzil1*, Mohd Hasbi Ab. Rahim1, Gaanty Pragas Maniam2

 

1Faculty of Industrial Science & Technology

2Central Laboratory

Universiti Malaysia Pahang, Lebuhraya Tun Razak,26300 Gambang, Kuantan, Pahang, Malaysia

 

*Corresponding author:  Aqilah_mawaddah@yahoo.com

 

 

Received: 14 January 2018; Accepted: 8 May 2018

 

 

Abstract

This paper presents the synthesis of rare earth cerium(IV) oxide (ceria) via simple precipitation method under room temperature. The two aims of this research are to: (i) synthesise a ceria-based material using simple process and chemicals and (ii) modify the ceria-based material with environmentally friendly elements. In this study, cerium nitrate hexahydrate and sodium hydroxide were utilised as the precursor and precipitant, respectively, to attain desired crystallite size and shape, at a fixed reaction pH of 12. Besides that, common cationic surfactant, cetyl-tri-methyl-ammonium bromide (CTAB), was used to enhance ceria-based material’s coveted properties. Furthermore, addition of surfactant and aging time (30 minutes, and 5, 10, 20, and 30 days) were also examined. Findings showed that as aging time increased, crystallite size decreased and production of large agglomerations were not observed. Then, optimum aging time was applied for synthesis of ceria material and modified ceria material, Fe-CeO2/TiO2, via impregnation method. These materials were subjected to X-ray diffraction (XRD), CO2-Temperature-Programmed Desorption (CO2-TPD), and Field Emission Scanning Electron Microscopy (FESEM) to investigate the mutual effect of surfactant addition and aging time.

 

Keywords:  cationic, ceria, crystallite, precipitating, surfactant

 

Abstrak

Kajian ini menggambarkan sintesis salah satu unsur nadir bumi iaitu cerium(IV) oksida (ceria), melalui kaedah pemendakan pada suhu bilik. Matlamat kajian ini ialah: (i) sintesis bahan berasaskan ceria menggunakan proses dan bahan kimia yang mudah dan (ii) mengubahsuai bahan berasaskan ceria dengan penambahan unsur-unsur mesra alam. Dalam kajian ini, cerium nitrat heksahidrat dan natrium hidroksida telah digunakan sebagai bahan pemula dan agen pemendakan, supaya saiz dan bentuk yang dikehendaki dapat diperolehi pada pH yang telah ditetapkan iaitu pH 12. Selain itu, bahan tipikal surfaktan kation, cetil-tri-metil-ammonium bromida (CTAB), telah digunakan untuk memudahkan penghasilan bahan berasakan ceria dengan sifat-sifat yang dikehendaki. Di samping itu, penambahan surfaktan dan kadar masa penuaan (30 minit, dan 5, 10, 20, dan 30 hari) turut dikaji. Hasil penemuan menunjukkan bahawa, apabila kadar masa penuaan ditingkatkan, saiz kristal berkurangan dan penghasilan gumpalan besar tidak ditemui. Justeru, kadar masa penuaan optima dipilih untuk sintesis bahan ceria dan bahan ceria yang diubah suai, Fe-CeO2/TiO2, melalui kaedah impregnasi. Seterusnya, bahan-bahan ini dianalisis melalui sistem pembelauan sinar-X (XRD), program penjerap bersuhu-CO2 (CO2-TPD), dan mikroskop elektron pengimbas pancaran medan (FESEM) untuk mengkaji kesan penambahan surfaktan dan kadar masa penuaan.

 

Kata kunci:  kation, ceria, kristal, pemendakan, surfaktan

 

References

1.       Sayyed, S. A., Beedri, N. I., Kadam, V. S. and Pathan, H. M. (2016). Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application. Bulletin of Materials Science, 39(6): 1381-1387.

2.       Namjesnik, D., Mutka, S., Iveković, D., Gajović, A., Willinger, M. and Preočanin, T. (2016). Application of the surface potential data to elucidate interfacial equilibrium at ceria/aqueous electrolyte interface. Adsorption, 22(4-6): 825-837.

3.       Eltayeb, A., Vijayaraghavan, R. K., McCoy, A., Venkatanarayanan, A., Yaremchenko, A. A., Surendran, R. and Daniels, S. (2015). Control and enhancement of the oxygen storage capacity of ceria films by variation of the deposition gas atmosphere during pulsed DC magnetron sputtering. Journal of Power Sources, 279: 94-99.

4.       Li, H., Hu, T., Liu, J., Song, S., Du, N., Zhang, R. and Hou, W. (2016). Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets. Applied Catalysis B: Environmental, 182: 431-438.

5.       Gao, G.-M., Zou, H.-F., Liu, D.-R., Miao, L.-N., Ji, G.-J. and Gan, S.-C. (2009). Influence of surfactant surface coverage and aging time on physical properties of silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350(1): 33-37.

6.       Das, D., Llorca, J., Dominguez, M., Colussi, S., Trovarelli, A. and Gayen, A. (2015). Methanol steam reforming behavior of copper impregnated over CeO2–ZrO2 derived from a surfactant assisted coprecipitation route. International Journal of Hydrogen Energy, 40(33): 10463-10479.

7.       Vantomme, A., Yuan, Z.-Y., Du, G. and Su, B.-L. (2005). Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir, 21(3): 1132-1135.

8.       Pan, C., Zhang, D. and Shi, L. (2008). CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. Journal of Solid State Chemistry, 181(6): 1298-1306.

9.       Ebadi, M., Amiri, O. and Sabet, M. (2018). Synthesis of CeO2/Au/Ho nanostructures as novel and highly efficient visible light driven photocatalyst. Separation and Purification Technology, 190: 117-122.

10.    Liu, Q., Ding, Y., Yang, Y., Zhang, L., Sun, L., Chen, P. and Gao, C. (2016). Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose. Materials Science and Engineering: C, 59: 445-453.

11.    Younis, A., Chu, D., Kaneti, Y. V. and Li, S. (2016). Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale, 8(1): 378-387.

12.    Zhang, D., Fu, H., Shi, L., Pan, C., Li, Q., Chu, Y. and Yu, W. (2007). Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorganic Chemistry, 46(7): 2446-2451.

13.    Terribile, D., Trovarelli, A., Llorca, J., de Leitenburg, C. and Dolcetti, G. (1998). The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. Journal of Catalysis, 178(1): 299-308.

14.    Ramasamy, V. and Vijayalakshmi, G. (2016). Synthesis and characterization of ceria quantum dots using effective surfactants. Materials Science in Semiconductor Processing, 42: 334-343.

15.    Yang, R. and Guo, L. (2005). Synthesis of cubic fluorite CeO2 nanowires. Journal of Materials Science, 40(5): 1305-1307.

16.    Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O. and Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461 (7261): 246-249.

17.    Lin, K.-S. and Chowdhury, S. (2010). Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: A review. International Journal of Molecular Sciences, 11(9): 3226-3251.

18.    Torrente-Murciano, L., Chapman, R. S., Narvaez-Dinamarca, A., Mattia, D. and Jones, M. D. (2016). Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons. Physical Chemistry Chemical Physics, 18(23): 15496-15500.

19.    Laosiripojana, N., Assabumrungrat, S. and Charojrochkul, S. (2007). Steam reforming of ethanol with Co-Fed oxygen and hydrogen over Ni on high surface area ceria support. Applied Catalysis A: General, 327(2): 180-188.

20.    Yao, S., Xu, W., Johnston-Peck, A., Zhao, F., Liu, Z., Luo, S. and Rodriguez, J. (2014). Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction. Physical Chemistry Chemical Physics, 16(32): 17183-17195.

21.    Yoshida, T., Murachi, M., Tsuji, S. and Taguchi, N. (1999). High heat-resistant catalyst with a porous ceria support. U.S. Patent and Trademark Office, Washington, DC.

22.    Li, H., Wang, G., Zhang, F., Cai, Y., Wang, Y. and Djerdj, I. (2012). Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Advances, 2(32): 12413-12423.

23.    Wang, J., Liu, Q. and Liu, Q. (2008). Ceriaand Cudoped ceria nanocrystals synthesized by the hydrothermal methods. Journal of the American Ceramic Society, 91(8): 2706-2708.

24.    Deori, K., Gupta, D., Saha, B., Awasthi, S. K. and Deka, S. (2013). Introducing nanocrystalline CeO2 as heterogeneous environmental friendly catalyst for the aerobic oxidation of para-xylene to terephthalic acid in water. Journal of Materials Chemistry A, 1(24): 7091-7099.

25.    Karakoti, A. S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G. and Baer, D. R. (2012). Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surface and Interface Analysis, 44(8): 882-889.

26.    Indran, V. P., Zuhaimi, N. A. S., Deraman, M. A., Maniam, G. P., Yusoff, M. M., Hin, T.-Y. Y. and Rahim, M. H. A. (2014). An accelerated route of glycerol carbonate formation from glycerol using waste boiler ash as catalyst. RSC Advances, 4(48): 25257-25267.

27.    Huang, X.-S., Sun, H., Wang, L.-C., Liu, Y.-M., Fan, K.-N. and Cao, Y. (2009). Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 90(1): 224-232.

28.    Aziz, R. C. A., Ab Rahman, I. and Mohamad, D. (2012). Synthesis of silica hybrid nanoparticles and the effect of their addition on the hardness of the dental nanocomposites. International Journal on Advanced Science, Engineering and Information Technology, 2(3): 211-214.

29.    Yunus, M., Suharyadi, E. and Triyana, K. (2016). Effect of stirring rate on the synthesis silver nanowires using polyvinyl alcohol as a capping agent by polyol process. International Journal on Advanced Science, Engineering and Information Technology, 6(3): 365-369.

30.    Zain, N. M., Rashdi, N. M., Ubaidillah, N. K. A. N. and Azmi, M. S. (2016). The effect of carbon nanotube loading on wettability of solder paste SAC 237 and different substrates. International Journal on Advanced Science, Engineering and Information Technology, 6(4): 540-543.

 




Previous                    Content                    Next