Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 429 - 434

DOI: 10.17576/mjas-2018-2203-07

 

 

 

MECHANICAL PROPERTIES OF BIOPLASTIC FROM JACKFRUIT SEED FLOUR AND POLYPROPYLENE

 

(Sifat Mekanikal Bioplastik daripada Tepung Biji Nangka dan Polipropelina)

 

Fairuzdzah Ahmad Lothfy*, Asiah Mohd Nor, Syamsyir Akmal Senawi, Nur Sha'adah Zainuddin, Nur Aina Shuhada Norzeri, Nur Yasmin Sahira Saifful Bahri, Puteri Elyana Natasa Mohmad Azmi, Aliya Nuharissa Kamaruzaman

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  fairuzdzah@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

In this study, the bioplastic was successfully fabricated from jackfruit seed flour/polypropylene blend. Nowadays, the plastic used are originally from petroleum, in which is limited resources and non-degradable polymer that causes environmental problem. The jackfruit (Artocarpus heterophyllus) has been commercially produced in the farming industry. Approximately 8 to 15 % of jackfruit are mostly thrown after consumption. Thus it can be used as the value added product development for future demand. In this study, the jackfruit seeds flour was plasticized by using glycerol, and blended with different ratios of polypropylene. The mechanical properties such as tensile strength, strain at break, flexibility and water absorption of fabricated bioplastic were investigated. The tensile strength and strain at break decreased with increasing of jackfruit seed flour content, while Young’s Modulus increased with the jackfruit seed flour content increased. Addition of polypropylene demonstrated higher water resistant ability. The jackfruit seed can be a new resource of bioplastic that could be preserved as a petrochemical resource and reduces the environmental impact.

 

Keywords:  bioplastic, jackfruit seed, mechanical properties, polypropylene, water absorption

 

Abstrak

Dalam kajian ini, bioplastik berjaya dihasilkan dari campuran tepung biji nangka/polipropilena. Kini, plastik yang digunakan berasal daripada petroleum, di mana sumber yang terhad dan polimer yang tidak boleh degradasi yang menyebabkan masalah kepada alam sekitar. Buah nangka (Artocarpus heterophyllus) telah dihasilkan secara komersil dalam industri pertanian. Kira-kira 8 hingga 15% daripada nangka dibuang selepas penggunaan. Oleh itu, ia boleh digunakan sebagai nilai tambah produk untuk permintaan masa depan. Dalam kajian ini, tepung biji nangka telah diplastikkan dengan menggunakan gliserol, dan dicampur dengan polipropilena dengan nisbah yang berlainan. Sifat-sifat mekanik seperti kekuatan tegangan, ketegangan pada rehat, fleksibiliti dan penyerapan air bioplastik dikaji. Kekuatan tegangan dan ketegangan pada rehat menurun dengan peningkatan kandungan tepung biji nangka, sementara Modulus Young meningkat dengan kandungan tepung biji nangka meningkat. Penambahan polipropilena menunjukkan keupayaan tahan air yang lebih tinggi. Biji nangka dapat menjadi sumber bioplastik baru yang dapat dipelihara sebagai sumber petrokimia dan mengurangkan kesan kepada persekitaran.

 

Kata kunci:  bioplastik, biji nangka, sifat mekanik, polipropilena, penyerapan air

 

References

1.       Ashter, S. A. (2016). New developments introduction to bioplastics engineering. Oxford: William Andrew Publishing, New York: pp. 251-274.

2.       Gill, M. (2014). Bioplastic: A better alternative to plastics. International Journal of Research in Applied, Natural and Social Sciences, 2(8): 115-120.

3.       The Future of Bioplastics for Packaging to 2020. (2015). United Kingdom: Smithers Pira.

4.       Siracusa, V., Rocculi, P., Romani, S.  and Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 19(12): 634–643.

5.       Toh Wen, Y., Lai Jau, C. and Wan A. W. A. R. (2011). Mechanical and water absorption properties of poly(vinyl alcohol)/sago pith waste biocomposites. Journal of Composite Materials, 45(11): 1201-1207.

6.       Rodriguez-Llamazares, S. (2013). Polypropylene/starch blends: Study of thermal and morphological properties. Journal of the Chilean Chemical Society, 58(1): 1643-1646.

7.       Obasi, H. C. and Igwe, I. O. (2012). Cassava starch-mixed polypropylene bidegradable polymer: Preparation, characterization, and effect biodegradable products on growth of plants. International Journal of Science and Research, 3(7): 802-807.

8.       Obasi, H., Onuoha, F., Eze, I., Nwanonenyi, S., Arukalam, I. and Uzoma, P. (2013). Effect of soil burial on properties of polypropylene (PP)/plasticized potato starch (PPS) blends. The International Journal of Engineering and Science, 2(8): 14-18.

9.       Ismail, B. K. N. (2013). Consumer preference for jackfruit varieties in Malaysia. Journal of Agribusiness Marketing, 6: 37-51.

10.    Ministry of Agriculture and Agro-Based Industry (2015). Agrofood Statistics 2014: Information Management and Statistics Section, Policy and Strategic Planning Division: pp. 39.

11.    Tran, P. L., Nguyen, D. H. D., Do, V. H., Kim, Y.-L., Park, S., Yoo, S.-H. and Kim, Y.-R. (2015). Physicochemical properties of native and partially gelatinized high-amylose jackfruit (Artocarpus heterophyllus Lam.) seed starch. LWT - Food Science and Technology, 62(2): 1091-1098.

12.    Rosa, D. S., Guedes, C. G. F. and Carvalho, C. L. (2007). Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. Journal of Materials Science, 42(2): 551-557.

13.    Madruga, M. S., de Albuquerque, F. S. M., Silva, I. R. A., do Amaral, D. S., Magnani, M. and Queiroga Neto, V. (2014). Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch. Food Chemistry, 143: 440-445.

14.    Bobbio F. O., el Dash, A. A., Bobbio P. A. and Rodrigues L. R. (1978). Isolation and characterization of the physiochemical properties of the starch of jackfruit seeds (Artocarpus heterophyllus). The American Association of Cereal Chemists, 55(4): 505-511.

15.    Menzel, C., Andersson, M., Andersson, R., Vazquez-Gutierrez, J. L., Daniel, G., Langton, M. and Koch, K. (2015). Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes. Carbohydrate Polymers, 130: 388-397.

16.    Gupta A.P. and Alam, A. (2014). Study of flexural, tensile, impact properties and morphology of potato starch/polypropylene blends. International Journal of Advanced Research, 2(11): 599-604.

17.    Shafik S. S., Majeed, K. J. and Kamil, M. I. (2014). Preparation of PVA/corn starch blend films and studying the influence of gamma irradiation on mechanical properties. International Journal of Materials Science and Applications, 3(2): 25-28.

18.    Parvin, F., Rahman, M. A., Islam, J. M. M., Khan, M. A. and Saadat, A. H. M. (2010). Preparation and characterization of starch/PVA blend for biodegradable packaging material. Advanced Materials Research, 123-125: 351-354.

19.    Visakh, P. M., L. Y. (2016). Starch-based blends, composites and nanocomposites. United Kingdom: Royal Society of Chemistry : pp 85-86.

 




Previous                    Content                    Next