Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 197 - 202

DOI: 10.17576/mjas-2018-2202-04

 

 

 

VALIDATION METHOD FOR EXTRACTION AND DETERMINATION OF MARBOFLOXACIN IN PLASMA AND EDIBLE CHICKEN TISSUES

 

 (Kaedah Validasi bagi Pengesktrakan dan Penentuan Marbofloxacin di dalam Plasma dan Tisu Ayam yang Boleh Di Makan)

 

Natalia Francisca Urzúa1*, Guillermo Fermín Prieto1, Carlos Fernando Lüders2, Maria Paula Tonini1,

Eduardo Jesús Picco3, Carlos Alberto Errecalde1

 

1 Department of Animal Clinic, Faculty of Agronomy and Veterinary Medicine,

University National of Rio Cuarto, Route 36 Km 601, Rio Cuarto, Argentina

2 School of Veterinary Medicine,

Catholic University of Temuco, Casilla 15D, Temuco, Chile

3 Chair of Pharmacology, Faculty of Veterinary Sciences,

University National of the Litoral, Kreder 2805, Esperanza, Argentina

 

*Corresponding author:  nurzuapizarro@ayv.unrc.edu.ar

 

 

Received: 16 December 2017; Accepted: 16 February 2018

 

 

Abstract

Marbofloxacin (MBX) is an antimicrobial for exclusive veterinary use, relatively new and of which there are few analytical methods for the extraction, identification and quantification in plasma and edible tissues (muscle, liver, kidney, lung, skin) in broiler chickens. The objective of developing a simple, sensitive and efficient extraction and detection method through high-performance liquid chromatography (HPLC) with fluorescence detection. For the preparation of the samples, known concentrations of MBX, enrofloxacin (ENX) as internal standard, methanol, water and perchloric acid, were added to plasma or tissues. Chromatographic conditions were: fluorescence detector at λex 295 and λem 490 nm, mobile phase composed of deionized water, acetonitrile and triethylamine adjusted to pH 3.0. For all matrices, the method was linear (r2= 0.99) for MAR concentrations (0.039 to 2.5 μg/ml or gr), with an average retention time for MBX in the different matrices of 3.97 ± 0.144 minutes, and 4.99 ± 0.24 minutes for the internal standard (enrofloxacin). Detection limit in all matrices was less than 0.006 μg/ml, while recoverability percentage was 89 ± 4.65% and variation coefficients in intraday-interday assay ≤ 1.4%, determining the accuracy of the study. The analytical method applied is efficient, sensitive and reliable for future residue determinations or pharmacokinetic studies of marbofloxacin in plasma, muscle, liver, kidney, skin and lung in broiler chickens.

 

Keywords:  marbofloxacin, high-performance liquid chromatography, chicken

 

Abstrak

Marbofloxacin (MBX) ialah antimikrob yang digunakan secara eksklusif bagi veterinar, secara relatifnya adalah baru dan hanya beberapa kaedah analisis bagi pengekstrakan, pengenalpastian dan kuantifikasi di dalam plasma dan tisu yang boleh di makan (otot, hati, buah pinggang, paru-paru dan kulit) di dalam ayam daging telah di perkenal. Objektif kajian adalah pembangunan kaedah pengesanan yang mudah, sensitif dan berkesan menggunakan kromatografi cecair berprestasi tinggi (HPLC) dengan pengesan pendaflour. Bagi penyediaan sampel, kepekatan MBX, enrofloxacin (ENX) sebagai piawai dalam, metanol, air dan asid perklorik ditambah ke dalam tisu plasma. Tetapan kromatografi adalah: pengesan pendaflour pada λex 295 dan λem 490 nm, fasa bergerak terdiri daripada air ternyahion, asetonitril, dan trietilamina yang diselaraskan pada pH 3.0. Bagi semua matriks sampel, kaedah adalah bersifat linear (r2= 0.99) bagi kepekatan MBX (0.039 hingga 2.5 μg/ml atau μg/g), dengan purata masa tahanan di dalam matriks berbeza ialah 3.97 ± 0.144 minit, dan 4.99 ± 0.24 minit bagi piawai (enrofloxacin). Had pengesan di dalam semua matriks adalah lebih rendah dari nilai 0.006 μg/ml, manakala peratus perolehan semula ialah 89 ± 4.65% dan pekali variasi bagi ujian intra-hari dan inter-hari ≤ 1.4%, menjelaskan kejituan kaedah. Kaedah analisis yang digunapakai adalah efisien, sensitif, dan dipercayai bagi tujuan penentuan sisa atau kajian farmakokinetik marbofloxacin di dalam plasma, otot, hati, buah pinggang, kulit dan paru-paru ayam daging.

 

Kata kunci:  marbofloxacin, kromatografi cecair berprestasi tinggi, ayam

 

References

1.       Hermo, M. P., Barrón, D. and Barbosa, J. (2006).  Development  of  analytical  methods  for  multiresidue determination of quinolones in pig muscle samples by liquid chromatography with ultraviolet detection, liquid chromatography–mass  spectrometry and liquid chromagraphy–tandem mass spectrometry. Journal of Chromatography A1104(1): 132-139.

2.       Garcia, M. A., Solans, C., Aramayona, J. J., Rueda, S. and Bregante, M. A. (1999). Determination of marbofloxacin in plasma samples by high-performance liquid chromatography using fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications729(1): 157-161.

3.       Talero-Pérez, Y. V., Medina, O. J. and Rozo-Núñez, W. (2014). Técnicas analíticas contemporáneas para la identificación de residuos de sulfonamidas, quinolonas y cloranfenicol. Universitas Scientiarum19(1):11-29.

4.       Teixeira, A. M. (2009). Determinação de resíduos de fluoroquinolonas em amostras de tecido muscular de frangos e respectivo  impacto  na saúde humana. Tesis doctorado de Universidade de Coimbra. Portugal: pp. 44-45.

5.       Landoni, M. F. and Albarellos, G. (2015). The use of antimicrobial agents in broiler chickens. The Veterinary Journal205(1): 21-27.

6.       Anadón A., Martínez-Larragaña, M. R. Días, M. J., Martínez, M. A., Frejo, M. T. Martínez, M., Tafur, M. and Castellano, V. J. (2002). Pharmacokinetic characteristics and tissue residues for marbofloxacin and its metabolite N-desmethyl-marbofloxacin in broiler chickens. American Journal of Veterinary Research63(7): 927-933.

7.       Spreng, M., Deleforge, J., Thomas, V., Boisrame, B. and Drugeon, H. (1995). Antibacterial activity of marbofloxacin. A new fluoroquinolone for veterinary use against canine and feline isolates. Journal of Veterinary Pharmacology and Therapeutics18(4): 284-289.

8.       Ding, H., Wang, L., Shen, X., Gu, X., Zeng, D. and Zeng, Z. (2013). Plasma and tissue pharmacokinetics of marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia coli. Journal of Veterinary Pharmacology and Therapeutics36(5): 511-515.

9.       El-Komy, A., Attia, T., El Latif, A. A. and Fathy, H. (2016). Bioavailability pharmacokinetics and residues of marbofloxacin in normal and E. coli infected broiler chicken. International Journal of Pharmacology and Toxicology4(2): 144-149.

10.    Huang, X. H., Chen, Z. L. and Zhang, S. T. (2003). Influence of experimentally Pasteurella multocida infection on the pharmacokinetics of marbofloxacin in broiler chickens. Acta Veterinaria et Zootechnica Sinica34(1): 98-102.

11.    Verdon, E., Couëdor, P. and Sanders, P. (2004). Validation of a multi-quinolone, multi-matrix, multi-species method for the determination of quinolone residues by HPLC with fluorescence detection.  CRL AFSSA  LERMVD.  Posters.

12.    Zhao, S. Jiang, H.  Li, X.  Mi, T. Li, C. and Shen, J. (2007). Simultaneous determination of trace levels of 10 quinolones in swine, chicken, and shrimp muscle tissues using HPLC with programmable fluorescence detection. Journal of Agricultural and Food Chemistry, 55(10): 3829-3834.

13.    Yang, F., Yang, Y. R., Wang, L., Huang, X. H., Qiao, G. and Zeng, Z. L. (2014). Estimating marbofloxacin withdrawal time in broiler chickens using a population physiologically based pharmacokinetics model. Journal of Veterinary Pharmacology and Therapeutics37(6): 579-588.

14.    Yorke, J. C. and Froc, P. (2000). Quantitation of nine quinolones in chicken tissues by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A882(1): 63-77.

15.    Gigosos, P. G., Revesado, P. R., Cadahıa, O., Fente, C. A., Vazquez, B. I., Franco, C. M. and Cepeda, A. (2000). Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography A871(1): 31-36.

16.    Yu, H., Tao, Y., Chen, D., Pan, Y., Liu, Z., Wang, Y. and Yuan, Z. (2012). Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction. Journal of Chromatography B885: 150-159.

17.    Rocha, D. G., Santos, F. A., da Silva, J. C. C., Augusti, R. and Faria, A. F. (2015). Multiresidue determination of fluoroquinolones in poultry muscle and kidney according to the regulation 2002/657/EC. A systematic comparison of two different approaches: Liquid chromatography coupled to high-resolution mass spectrometry or tandem mass spectrometry. Journal of Chromatography A1379: 83-91.

18.    Valle, M., Schneider, M., Galland, D., Giboin, H. and Woehrle, F. (2012). Pharmacokinetic and pharmacodynamic testing of marbofloxacin administered as a single injection for the treatment of bovine respiratory disease. Journal of Veterinary Pharmacology And Therapeutics35(6): 519-528.

19.    Silva, N. and Sousa, M. (2017). Is marbofloxacin a good candidate for treating pigs in Europe?. Veterinary Record180(24): 588-590.

20.    Böttcher, S., Baum, H. V., Hoppe-Tichy, T., Benz, C. and Sonntag, H. G. (2001). An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum. Journal of Pharmaceutical and Biomedical Analysis25(2): 197-203.

21.    EMEA. 2002, 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C (3044), European Medicines Agency.

22.    Bailac, S., Ballesteros, O., Jiménez-Lozano, E., Barrón, D., Sanz-Nebot, V., Navalón A. and Barbosa, J. (2004). Determination of quinolones in chicken tissues by liquid chromatography with ultraviolet absorbance detection. Journal Chromatography. A1029 (1):145-151.

 




Previous                    Content                    Next