Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 197 - 202
DOI:
10.17576/mjas-2018-2202-04
VALIDATION
METHOD FOR EXTRACTION AND DETERMINATION OF MARBOFLOXACIN IN PLASMA AND EDIBLE CHICKEN TISSUES
(Kaedah Validasi bagi Pengesktrakan dan Penentuan Marbofloxacin di dalam
Plasma dan Tisu Ayam yang Boleh Di Makan)
Natalia Francisca Urzúa1*, Guillermo Fermín Prieto1,
Carlos Fernando Lüders2, Maria Paula Tonini1,
Eduardo Jesús Picco3, Carlos Alberto Errecalde1
1
Department of Animal Clinic,
Faculty of Agronomy and Veterinary Medicine,
University
National of Rio Cuarto, Route 36 Km 601, Rio Cuarto, Argentina
2
School of Veterinary Medicine,
Catholic
University of Temuco, Casilla 15D, Temuco, Chile
3
Chair of Pharmacology, Faculty of
Veterinary Sciences,
University
National of the Litoral, Kreder 2805, Esperanza, Argentina
*Corresponding author: nurzuapizarro@ayv.unrc.edu.ar
Received: 16
December 2017; Accepted: 16 February 2018
Abstract
Marbofloxacin (MBX) is an antimicrobial
for exclusive veterinary use, relatively new and of which there are few
analytical methods for the extraction, identification and quantification in
plasma and edible tissues (muscle, liver, kidney, lung, skin) in broiler
chickens. The objective of developing a simple, sensitive and efficient
extraction and detection method through high-performance liquid chromatography
(HPLC) with fluorescence detection. For the preparation of the samples, known
concentrations of MBX, enrofloxacin (ENX) as internal standard, methanol, water
and perchloric acid, were added to plasma or tissues. Chromatographic
conditions were: fluorescence detector at λex 295 and λem 490 nm, mobile phase composed of deionized
water, acetonitrile and triethylamine adjusted to pH 3.0. For all matrices, the
method was linear (r2= 0.99) for MAR concentrations (0.039 to 2.5 μg/ml or gr), with an average retention time
for MBX in the different matrices of 3.97 ± 0.144 minutes, and 4.99 ± 0.24
minutes for the internal standard (enrofloxacin). Detection limit in all
matrices was less than 0.006 μg/ml, while recoverability percentage was 89 ± 4.65% and variation
coefficients in intraday-interday assay ≤ 1.4%, determining the accuracy of the
study. The analytical method applied is efficient, sensitive and reliable for
future residue determinations or pharmacokinetic studies of marbofloxacin in
plasma, muscle, liver, kidney, skin and lung in broiler chickens.
Keywords: marbofloxacin, high-performance liquid
chromatography, chicken
Abstrak
Marbofloxacin (MBX) ialah antimikrob yang digunakan secara eksklusif bagi
veterinar, secara relatifnya adalah baru dan hanya beberapa kaedah analisis
bagi pengekstrakan, pengenalpastian dan kuantifikasi di dalam plasma dan tisu
yang boleh di makan (otot, hati, buah pinggang, paru-paru dan kulit) di dalam
ayam daging telah di perkenal. Objektif kajian adalah pembangunan kaedah
pengesanan yang mudah, sensitif dan berkesan menggunakan kromatografi cecair
berprestasi tinggi (HPLC) dengan pengesan pendaflour. Bagi penyediaan sampel,
kepekatan MBX, enrofloxacin (ENX) sebagai piawai dalam, metanol, air dan asid
perklorik ditambah ke dalam tisu plasma. Tetapan kromatografi adalah: pengesan
pendaflour pada λex 295 dan λem 490 nm, fasa bergerak terdiri daripada air ternyahion,
asetonitril, dan trietilamina yang diselaraskan pada pH 3.0. Bagi semua matriks
sampel, kaedah adalah bersifat linear (r2= 0.99) bagi kepekatan MBX
(0.039 hingga 2.5 μg/ml atau μg/g), dengan purata masa tahanan di dalam matriks
berbeza ialah 3.97 ± 0.144 minit, dan 4.99 ± 0.24 minit bagi piawai
(enrofloxacin). Had pengesan di dalam semua matriks adalah lebih rendah dari nilai
0.006 μg/ml, manakala peratus perolehan semula ialah 89 ± 4.65% dan pekali
variasi bagi ujian intra-hari dan inter-hari ≤ 1.4%, menjelaskan kejituan
kaedah. Kaedah analisis yang digunapakai adalah efisien, sensitif, dan
dipercayai bagi tujuan penentuan sisa atau kajian farmakokinetik marbofloxacin
di dalam plasma, otot, hati, buah pinggang, kulit dan paru-paru ayam daging.
Kata
kunci: marbofloxacin, kromatografi cecair berprestasi tinggi,
ayam
References
1. Hermo, M. P., Barrón, D. and Barbosa,
J. (2006). Development of analytical methods for multiresidue
determination of quinolones in pig muscle samples by liquid chromatography with
ultraviolet detection, liquid chromatography–mass spectrometry and liquid chromagraphy–tandem
mass spectrometry. Journal of Chromatography A, 1104(1): 132-139.
2. Garcia, M. A., Solans, C., Aramayona,
J. J., Rueda, S. and Bregante, M. A. (1999). Determination of marbofloxacin in
plasma samples by high-performance liquid chromatography using fluorescence
detection. Journal of Chromatography B: Biomedical Sciences and
Applications, 729(1):
157-161.
3. Talero-Pérez, Y. V., Medina, O. J.
and Rozo-Núñez, W. (2014). Técnicas analíticas contemporáneas para la identificación
de residuos de sulfonamidas, quinolonas y cloranfenicol. Universitas
Scientiarum, 19(1):11-29.
4. Teixeira, A. M. (2009). Determinação
de resíduos de fluoroquinolonas em amostras de tecido muscular de frangos e
respectivo impacto na saúde humana. Tesis doctorado de
Universidade de Coimbra. Portugal: pp. 44-45.
5. Landoni, M. F. and Albarellos, G.
(2015). The use of antimicrobial agents in broiler chickens. The
Veterinary Journal, 205(1):
21-27.
6. Anadón A., Martínez-Larragaña, M. R.
Días, M. J., Martínez, M. A., Frejo, M. T. Martínez, M., Tafur, M. and
Castellano, V. J. (2002). Pharmacokinetic characteristics and tissue residues
for marbofloxacin and its metabolite N-desmethyl-marbofloxacin in broiler
chickens. American Journal of Veterinary Research, 63(7): 927-933.
7. Spreng, M., Deleforge, J., Thomas,
V., Boisrame, B. and Drugeon, H. (1995). Antibacterial activity of
marbofloxacin. A new fluoroquinolone for veterinary use against canine and
feline isolates. Journal of Veterinary Pharmacology and Therapeutics, 18(4): 284-289.
8. Ding, H., Wang, L., Shen, X., Gu, X.,
Zeng, D. and Zeng, Z. (2013). Plasma and tissue pharmacokinetics of
marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia
coli. Journal of Veterinary Pharmacology and Therapeutics, 36(5): 511-515.
9. El-Komy, A., Attia, T., El Latif, A.
A. and Fathy, H. (2016). Bioavailability pharmacokinetics and residues of
marbofloxacin in normal and E. coli infected broiler chicken. International
Journal of Pharmacology and Toxicology, 4(2): 144-149.
10. Huang, X. H., Chen, Z. L. and Zhang,
S. T. (2003). Influence of experimentally Pasteurella
multocida infection on the pharmacokinetics of marbofloxacin in broiler
chickens. Acta Veterinaria et Zootechnica Sinica, 34(1): 98-102.
11. Verdon, E., Couëdor, P. and Sanders,
P. (2004). Validation of a multi-quinolone, multi-matrix, multi-species method
for the determination of quinolone residues by HPLC with fluorescence
detection. CRL AFSSA LERMVD.
Posters.
12. Zhao, S. Jiang, H. Li, X.
Mi, T. Li, C. and Shen, J. (2007). Simultaneous determination of trace
levels of 10 quinolones in swine, chicken, and shrimp muscle tissues using HPLC
with programmable fluorescence detection. Journal
of Agricultural and Food Chemistry, 55(10): 3829-3834.
13. Yang, F., Yang, Y. R., Wang, L.,
Huang, X. H., Qiao, G. and Zeng, Z. L. (2014). Estimating marbofloxacin
withdrawal time in broiler chickens using a population physiologically based
pharmacokinetics model. Journal of Veterinary Pharmacology and Therapeutics, 37(6): 579-588.
14. Yorke, J. C. and Froc, P. (2000).
Quantitation of nine quinolones in chicken tissues by high-performance liquid
chromatography with fluorescence detection. Journal of Chromatography A, 882(1): 63-77.
15. Gigosos, P. G., Revesado, P. R.,
Cadahıa, O., Fente, C. A., Vazquez, B. I., Franco, C. M. and Cepeda, A. (2000).
Determination of quinolones in animal tissues and eggs by high-performance
liquid chromatography with photodiode-array detection. Journal of
Chromatography A, 871(1):
31-36.
16. Yu, H., Tao, Y., Chen, D., Pan, Y.,
Liu, Z., Wang, Y. and Yuan, Z. (2012). Simultaneous determination of
fluoroquinolones in foods of animal origin by a high performance liquid
chromatography and a liquid chromatography tandem mass spectrometry with accelerated
solvent extraction. Journal of Chromatography B, 885: 150-159.
17. Rocha, D. G., Santos, F. A., da
Silva, J. C. C., Augusti, R. and Faria, A. F. (2015). Multiresidue
determination of fluoroquinolones in poultry muscle and kidney according to the
regulation 2002/657/EC. A systematic comparison of two different approaches:
Liquid chromatography coupled to high-resolution mass spectrometry or tandem
mass spectrometry. Journal of Chromatography A, 1379: 83-91.
18. Valle, M., Schneider, M., Galland,
D., Giboin, H. and Woehrle, F. (2012). Pharmacokinetic and pharmacodynamic
testing of marbofloxacin administered as a single injection for the treatment
of bovine respiratory disease. Journal of Veterinary Pharmacology And
Therapeutics, 35(6):
519-528.
19. Silva, N. and Sousa, M. (2017). Is
marbofloxacin a good candidate for treating pigs in Europe?. Veterinary
Record, 180(24):
588-590.
20. Böttcher, S., Baum, H. V.,
Hoppe-Tichy, T., Benz, C. and Sonntag, H. G. (2001). An HPLC assay and a
microbiological assay to determine levofloxacin in soft tissue, bone, bile and
serum. Journal of Pharmaceutical and Biomedical Analysis, 25(2): 197-203.
21. EMEA. 2002, 2002/657/EC: Commission
Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning
the performance of analytical methods and the interpretation of results (Text
with EEA relevance) (notified under document number C (3044), European
Medicines Agency.
22. Bailac, S.,
Ballesteros, O., Jiménez-Lozano, E., Barrón, D., Sanz-Nebot, V., Navalón A. and
Barbosa, J. (2004). Determination of quinolones in chicken tissues by liquid
chromatography with ultraviolet absorbance detection. Journal Chromatography. A, 1029 (1):145-151.