Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 185 - 196
DOI:
10.17576/mjas-2018-2202-03
DETERMINATION
OF POLYPHENOL CONTENTS IN Hevea
brasiliensis AND RUBBER-PROCESSING EFFLUENT
(Penentuan Kandungan Polifenol dalam Hevea brasiliensis dan Sisa Pemprosesan Getah)
Azmi Ismun1,
Marinah Mohd Ariffin2, Shamsul Bahri Abd Razak1, Ong Chin Wei3, Fauziah Tufail Ahmad1, Aidilla Mubarak1*
1School of Food Science and Technology
2School of Marine and Environmental Science
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Crop Improvement and Protection Unit,
Rubber
Research Institute of Malaysia, 47000 Sungai Buloh, Selangor, Malaysia
*Corresponding
author: aidilla@umt.edu.my
Received: 26
August 2017; Accepted: 29 January 2018
Abstract
The information on polyphenol
composition of Hevea brasiliensis is
limited despite the importance of understanding the value of this
phytochemical, especially in terms of plant protection. There are also no
reports available on the polyphenols content of rubber-processing effluent. The
objective of this study is to determine the presence of polyphenol compounds in
latex C-serum and effluent using Fourier-transform infrared spectroscopy (FTIR)
analysis. This study also aims to profile specific phenolics using High
Performance Liquid Chromatography (HPLC). Results from the FTIR analysis showed
the presence of polyphenols in both latex and effluent. The optimal method for
determining polyphenol by HPLC was determined which uses methanol and 0.5%
acetic acid as the mobile phases. Several polyphenol peaks, including gallic acid,
naphtoic acid, quercetin, chlorogenic acid and rutin, were detected in both
latex and effluent when compared to authentic polyphenol standards.
Optimization of the solid phase extraction using weak anion-exchange
reversed-phase (WAX + C18) chromatography was shown to yield a higher recovery
percentage compared to a C18-E cartridge. The results of this study show the
potential for understanding polyphenol composition in latex of H. brasiliensis and effluent from rubber
processing which has not been explored before.
Keywords: Hevea
brasiliensis, polyphenols, latex, effluent, solid phase extraction
Abstrak
Maklumat
mengenai komposisi polifenol di dalam Hevea
brasiliensis adalah terhad walaupun kefahaman ke atas fitokimia ini
penting, terutama bagi aspek perlindungan tanaman. Kandungan polifenol di dalam
sisa buangan pemprosesan getah juga masih belum dilaporkan. Objektif kajian ini
adalah untuk menentukan kehadiran sebatian polifenol di dalam C-serum lateks
dan sisa buangan menggunakan analisis spektroskopi inframerah transformasi
Fourier (FTIR). Kajian ini juga mensasarkan untuk mencirikan fenolik yang
spesifik di dalam kedua-dua sampel lateks dan sisa buangan menggunakan analisis
kromatografi cecair prestasi tinggi (HPLC). Analisis menggunakan FTIR telah
membuktikan kehadiran sebatian polifenol di dalam kedua-dua sampel lateks dan
sisa buangan. Kaedah optimum untuk menentukan kandungan polifenol menggunakan
HPLC telah dapat dibangunkan dengan penggunaan metanol dan 0.5% asid asetik
sebagai fasa bergerak. Analisis HPLC mengenalpasti beberapa puncak polifenol
telah dikenalpasti di dalam sampel lateks dan sisa buangan yang sepadan dengan
piawai polifenol termasuk asid galik, asid naftoik, kuersetin, asid klorogenik
dan rutin. Pengoptimuman pengekstrakan fasa pepejal menggunakan kromatografi
gabungan pertukaran anion lemah bersama C18 (WAX+C18) telah menunjukkan hasil
peratus perolehan kembali yang lebih tinggi berbanding katrij C18-E. Hasil
kajian ini menunjukkan potensi bagi memahami komposisi polifenol di dalam
lateks H. brasiliensis dan sisa
buangan pemprosesan getah yang masih belum diterokai.
Kata
kunci: Hevea
brasiliensis, polifenol, lateks, sisa
buangan, pengekstrakan fasa pepejal
References
1.
Malaysia
External Trade (MATRADE) Statistics (2016). Top 10 Major Export Products 2016.
MATRADE.
http://www.matrade.gov.my/en/malaysia-exporters-section/33-trade-statistics/4554-top-10-major-export-products-2016.
[Access online 27 November 2016].
2.
Sansatsadeekul, J., Sakdapipanich, J. and Rojruthai, P.
(2011) Characterization of associated proteins and phospholipids in natural
rubber latex. Journal of Bioscience and Bioengineering, 111(6): 628-934.
3.
Kongsawadworakul,
P. and Chrestin, H. (2003). Laser
diffraction: a new tool for identification and studies of physiological
effectors involved in aggregation coagulation of the rubber particles from Hevea latex. Journal of Plant and Cell Physiology, 44(7): 707-717.
4.
Daruliza, K. M.
A. Lam, K. L. Yang, K. L. Priscilla, J. T. Sunderasan, E. and Ong, M. T. (2011). Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Journal of European Review for
Medical and Pharmalogical Sciences,
15(9):
1027-1033.
5.
Lam, K. L.,
Yang, K. L., Sunderasan E. and Ong, M. T. (2012). Latex C-serum from Hevea brasiliensis induces non-apoptic
cell death in hepatocellular carcinoma cell line HepG2. Cell
Proliferation,
45(6): 577- 585.
6.
Abeywickrama,
G., Debnath, S. C., Ambigaipalan, P. and Shahidi, F. (2016). Phenolics of
selected cranberry genotypes (Vaccinium
macrocarpon Ait.) and their
antioxidant efficacy. Journal of
Agricultural and Food Chemistry, 64(49): 9342-9351.
7.
Rouphael, Y.,
Bernardi, J., Cardarelli, M., Bernardo, L., Kane, D., Colla, G. and Lucini, L.
(2016). Phenolic
compounds and sesquiterpene lactones profile in leaves of nineteen artichoke
cultivars anticancer Journal of
Agricultural and Food Chemistry, 64(45): 8540-8548.
8.
Manach, C.,
Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food sources and
bioavailability. American Journal of Clinical Nutrition, 79(5): 727-747.
9.
Boudet, A. M. (2007). Evolution
and current status of research in phenolic compounds. Journal of Phytochemistry, 68(22): 2722-2735.
10.
Feng, J., Wang, Y.,
Yi, X., Yang, W. and He, X. (2016). Phenolics from
durian exert pronounced no inhibitory and antioxidant activities. Journal of Agricultural and Food Chemistry, 64(21): 4273-4279.
11.
Wititsuwannakul,
D., Chareonthiphakornb, N., Pacec, M. and Wititsuwannakul, R. (2002). Polyphenol
oxidases from latex of Hevea brasiliensis:
Purification and characterization. Phytochemistry,
61(61): 115-121.
12.
Kumlanghan, A.,
Kanatharana, P. and Asawatreratanakul, P. (2008). Microbial BOD sensor for
monitoring treatment of wastewater. Enzyme
and Microbial Technology, 42(6): 483-491.
13.
Arimoro, F. O.,
Iwegbue, C. M. A. and Osiobe, O. (2008). Effects of industrial wastewater on the
physical and chemical characteristics of a tropical coastal river. Research Journal
of Environmental Sciences, 2(3): 209-220.
14.
Casa, R.,
Annibale, A. D., Pieruccetti, F., Stazi, S. R., Sermanni, G. and Cascio, B. L.
(2003). Reduction of the phenolic components in olive-mill
wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50: 959-966.
15.
Achak, M.,
Hafidi, A., Ouazzani, N., Sayadi, S. and Mandi, L. (2009). Low cost biosorbent
“banana peel” for the removal of phenolic compounds from olive mill wastewater:
Kinetic and equilibrium studies. Journal of Hazardous Materials, 166(1):
117-125.
16.
Brenneman,
C. and Ebeler, S. E. (1999). Chromatographic separations using solid-phase
extraction cartridges: Separation of wine phenolics. Journal of Chemical
Education, 76(12): 1710-1711.
17.
Papagiannopoulos,
M., Wollseifen, H. R., Mellenthin, A., Haber, B. and Galensa, R. (2004).
Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived
products by HPLC-UV-ESI/MS. Journal of Agricultural and Food Chemistry, 52(12): 3784-3791.
18.
Dvořáková,
M., Hulín, P., Karabín, M. and Dostálek, P. (2007). Determination of
polyphenols in beer by an effective method based on solid-phase extraction and
high performance liquid chromatography with diode-array detection. Czech
Journal of Food Sciences, 25(4):
182-188.
19.
Šeruga,
M., Novak, I. and Jakobek, L. (2011). Determination of polyphenols content and
antioxidant activity of some red wines by differential pulse voltammetry, HPLC
and spectrophotometric methods. Food Chemistry, 124(3): 1208-1216.
20.
Xie,
F. (2011). Rapid and sensitive analysis of eight polyphenols in tobacco by
rapid resolution liquid chromatography. American Journal of Analytical
Chemistry, 2(8): 929-933.
21.
Das, A. J.,
Khawas, P., Miyaji, T. and Deka, S. C. (2015). Phytochemical constituents,
ATR-FTIR analysis and antimicrobial activity of four plant leaves used for
preparing rice beer in Assam, India. International
Journal of Food Properties, 19(9): 2087-2101.
22.
Coates, J. (2006). Interpretation of infrared spectra, a practical approach. In
Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed; John Wiley and
Sons, Inc., Hoboken, New Jersey, USA: pp.10815- 10837.
23.
Folin, O. and
Ciocalteu, V. (1927). On tyrosine and
trytophane determination in protein. Journal of Biological Chemistry, 27: 627-650.
24.
Mradu, G.,
Saumyakanti, S., Sohini, M. and Arup, M. (2012).
HPLC
profiles of standard phenolic compounds present in medicinal
plants. International Journal of Pharmacognosy and
Phytochemical Research, 4(3): 162-167.
25.
Yu, J., Ahmedna,
M. and Goktepe, I. (2005). Effects of processing methods and extraction
solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chemistry, 90(1): 199-206.
26.
de
Villiers, A., Lynen, F., Crouch, A., and Sandra, P. (2004). Development of a solid-phase
extraction Procedure for the simultaneous determination of polyphenols, organic
acids and sugars in wine. Chromatographia, 59 (7-8): 403-409.
27.
Loeser,
E. (2009). Peculiarities of mobile phases containing formic acid. Chromatographia, 69(9-10): 807-811.
28.
Singh, R. and
Mendhulkar, V. D. (2015).
FTIR studies and spectrophotometric analysis of natural antioxidants,
polyphenols and flavonoids in Abutilon
indicum (Linn) sweet leaf extract. Journal of Chemical and Pharmaceutical
Research, 7(6):
205-211.
29.
Trifunschi, S.,
Munteanu, M. F., Agotici, V., Ardelean, S. P., and Gligor, R. (2015). Determination
of flavonoid and polyphenol compounds in Viscum
album and Allium sativum
extracts. International Current Pharmaceutical Journal, 4(5): 382-385.
30.
Li,
S., Tian, M. and Row, K. (2010). Effect of mobile phase additives on the
resolution of four bioactive compounds by RP-HPLC. International Journal of Molecular Sciences, 11(5): 2229-2240.
31.
Mulinnaci,
N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C. and Vincieri, F. F.
(2001). Polyphenolic content in olive oil waste waters and related olive
samples. Journal of Agriculture and Food
Chemistry, 49(8): 3509-3515.
32.
Dussourd, D. E.
and Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex
defense of plants. Science,
237(4817): 898-901.
33.
Farrell, B. D.,
Dussourd, D. E. and Mitter, C. (1991). Escalation of plant defenses: Do latex
and resin canals spur plant diversification? American Naturalist, 138(4): 881-900.
34.
Sangsil,
P., Nualsri, C., Woraathasin, N. and Nakkanong, K.
(2016). Characterization of the phenylalanine ammonia lyase gene from the
rubber tree (Hevea brasiliensis Mull.
Arg.) and differential response during Rigidoporus
microporus infection. Journal of
Plant Protection Research, 56(4): 380-388.
35.
Ko, J. H., Chow,
K. S. and Han, K. H. (2003). Transcriptome analysis reveals novel features of
the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Journal of Plant Molecular Biology, 53(4):
479-492.
36.
Lattanzio, V.,
Kroon, P. A., Quideau, S., and Treutter, D. (2008). Plant phenolics
– secondary metabolites with diverse functions. In Recent Advances in
Polyphenol Research, Daayf, F.;
Lattanzio, V., Eds; Wiley-Blackwell, Oxford, UK: pp. 1-386.
37.
Aziz, N. H.,
Farag, S. E., Mousa, L. A. and Abo-Zaid, M. A. (1998). Comparative
antibacterial and antifungal effects of some phenolic compounds. Microbiology, 93(374): 43-54.
38.
Tempesti, T. C.,
Alvarez, M. G., de Araújo, M. F., Catunda Júnior, F. E. A., de Carvalho, M. G.
and Durantini, E. N. (2012). Antifungal
activity of a novel quercetin derivative bearing a trifluoromethyl group on Candida albicans. Medicinal Chemistry Research, 21(9):
2217-2222.
39.
Nguyen, D. M.
C., Seo, D. J., Lee, H. B., Kim, I. S., Kim, K. Y., Park, R. D. and Jung, W. J.
(2013). Antifungal
activity of gallic acid purified from Terminalia
nigrovenulosa bark against Fusarium
solani. Microbial Pathogenesis,
56: 8-15.
40.
Leszczyński, B.,
Warchoł, J. and Niraz, S. (1985). The influence of
phenolic compounds on the preference of winter wheat cultivars by cereal
aphids. International Journal of Tropical
Insect Science, 6(2): 157-158.
41.
Verpoorte, R.,
van der Heijden, R., ten Hoopen, H. J. G. and Memelink, J. (1999). Metabolic engineering of plant secondary metabolite pathways for the
production of fine chemicals. Biotechnology
Letters, 21(6): 467-479.
42.
Nguyen,
N. H. and Luong, T. T. (2012). Situation of wastewater treatment of natural
rubber latex processing in the Southeastern region, Vietnam. Journal of Vietnamese Environment, 2(2):
58-64.
43.
Mohammadi, M.,
Man, H., Hassan, M. and Yee, P. (2013). Treatment of wastewater from rubber
industry in Malaysia. African Journal of Biotechnology, 9(38): 6233-6243.
44.
Owamah, H. I.,
Enaboifo, M. A. and Izinyon, O. C. (2015). Treatment of wastewater from raw rubber
processing industry using water lettuce macrophyte pond and the reuse of its
effluent as biofertilizer. Agricultural Water Management, 146: 262-269.
45.
Andersson,
L. I., Paprica, A. and Arvidsson, T. (1997). A highly selective solid phase
extraction sorbent for pre-concentration of sameridine made by molecular
imprinting. Chromatographia, 46(1-2):
57-62.
46.
Abd-Talib,
N., Mohd-Setapar, S. H. and Khamis, A. K. (2014). The benefits and limitations
of methods development in solid phase extraction: Mini review. Jurnal Teknologi (Sciences and Engineering), 69(4): 69-72.
47.
Thurman,
E. M. and Snavely, K. (2000). Advances in solid-phase extraction disks for
environmental chemistry. TrAC - Trends in Analytical Chemistry, 19(1): 18-26.
48.
Nema,
T., Chan, E. C. Y. and Ho, P. C. (2010). Application of silica-based monolith
as solid phase extraction cartridge for extracting polar compounds from urine. Talanta,
82(2): 488-494.
49.
Garcia-Salas,
P., Morales-Soto, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010).
Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules,
15(12):8813-8826.
50.
Rosa,
L., Alvarez-Parrilla, E. and Gonz, G. A. (2010). Fruit and vegetable phytochemicals fruit and vegetable phytochemicals.
Wiley-Blackwell, Iowa, USA: pp. 53-88.
51.
Kumar,
A., Malik, A. K. and Tewary, D. K. (2009). A new method for determination of
myricetin and quercetin using solid phase microextraction-high performance
liquid chromatography-ultra violet/visible system in grapes, vegetables and red
wine samples. Analytica Chimica Acta, 631(2): 177-181.