Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 185 - 196

DOI: 10.17576/mjas-2018-2202-03

 

 

 

DETERMINATION OF POLYPHENOL CONTENTS IN Hevea brasiliensis AND RUBBER-PROCESSING EFFLUENT

 

(Penentuan Kandungan Polifenol dalam Hevea brasiliensis dan Sisa Pemprosesan Getah)

 

Azmi Ismun1, Marinah Mohd Ariffin2, Shamsul Bahri Abd Razak1, Ong Chin Wei3, Fauziah Tufail Ahmad1, Aidilla Mubarak1*

 

1School of Food Science and Technology

2School of Marine and Environmental Science

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Crop Improvement and Protection Unit,

Rubber Research Institute of Malaysia, 47000 Sungai Buloh, Selangor, Malaysia

 

*Corresponding author:  aidilla@umt.edu.my

 

 

Received: 26 August 2017; Accepted: 29 January 2018

 

 

Abstract

The information on polyphenol composition of Hevea brasiliensis is limited despite the importance of understanding the value of this phytochemical, especially in terms of plant protection. There are also no reports available on the polyphenols content of rubber-processing effluent. The objective of this study is to determine the presence of polyphenol compounds in latex C-serum and effluent using Fourier-transform infrared spectroscopy (FTIR) analysis. This study also aims to profile specific phenolics using High Performance Liquid Chromatography (HPLC). Results from the FTIR analysis showed the presence of polyphenols in both latex and effluent. The optimal method for determining polyphenol by HPLC was determined which uses methanol and 0.5% acetic acid as the mobile phases. Several polyphenol peaks, including gallic acid, naphtoic acid, quercetin, chlorogenic acid and rutin, were detected in both latex and effluent when compared to authentic polyphenol standards. Optimization of the solid phase extraction using weak anion-exchange reversed-phase (WAX + C18) chromatography was shown to yield a higher recovery percentage compared to a C18-E cartridge. The results of this study show the potential for understanding polyphenol composition in latex of H. brasiliensis and effluent from rubber processing which has not been explored before.

 

Keywords:  Hevea brasiliensis, polyphenols, latex, effluent, solid phase extraction

 

Abstrak

Maklumat mengenai komposisi polifenol di dalam Hevea brasiliensis adalah terhad walaupun kefahaman ke atas fitokimia ini penting, terutama bagi aspek perlindungan tanaman. Kandungan polifenol di dalam sisa buangan pemprosesan getah juga masih belum dilaporkan. Objektif kajian ini adalah untuk menentukan kehadiran sebatian polifenol di dalam C-serum lateks dan sisa buangan menggunakan analisis spektroskopi inframerah transformasi Fourier (FTIR). Kajian ini juga mensasarkan untuk mencirikan fenolik yang spesifik di dalam kedua-dua sampel lateks dan sisa buangan menggunakan analisis kromatografi cecair prestasi tinggi (HPLC). Analisis menggunakan FTIR telah membuktikan kehadiran sebatian polifenol di dalam kedua-dua sampel lateks dan sisa buangan. Kaedah optimum untuk menentukan kandungan polifenol menggunakan HPLC telah dapat dibangunkan dengan penggunaan metanol dan 0.5% asid asetik sebagai fasa bergerak. Analisis HPLC mengenalpasti beberapa puncak polifenol telah dikenalpasti di dalam sampel lateks dan sisa buangan yang sepadan dengan piawai polifenol termasuk asid galik, asid naftoik, kuersetin, asid klorogenik dan rutin. Pengoptimuman pengekstrakan fasa pepejal menggunakan kromatografi gabungan pertukaran anion lemah bersama C18 (WAX+C18) telah menunjukkan hasil peratus perolehan kembali yang lebih tinggi berbanding katrij C18-E. Hasil kajian ini menunjukkan potensi bagi memahami komposisi polifenol di dalam lateks H. brasiliensis dan sisa buangan pemprosesan getah yang masih belum diterokai.

 

Kata kunci:  Hevea brasiliensis, polifenol, lateks, sisa buangan, pengekstrakan fasa pepejal

 

References

1.       Malaysia External Trade (MATRADE) Statistics (2016). Top 10 Major Export Products 2016. MATRADE. http://www.matrade.gov.my/en/malaysia-exporters-section/33-trade-statistics/4554-top-10-major-export-products-2016. [Access online 27 November 2016].

2.       Sansatsadeekul, J., Sakdapipanich, J. and Rojruthai, P. (2011) Characterization of associated proteins and phospholipids in natural rubber latex. Journal of Bioscience and Bioengineering, 111(6): 628-934.

3.       Kongsawadworakul, P. and Chrestin, H. (2003). Laser diffraction: a new tool for identification and studies of physiological effectors involved in aggregation coagulation of the rubber particles from Hevea latex. Journal of Plant and Cell Physiology, 44(7): 707-717.

4.       Daruliza, K. M. A. Lam, K. L. Yang, K. L. Priscilla, J. T. Sunderasan, E. and Ong, M. T. (2011). Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Journal of European Review for Medical and Pharmalogical Sciences, 15(9): 1027-1033.

5.       Lam, K. L., Yang, K. L., Sunderasan E. and Ong, M. T. (2012). Latex C-serum from Hevea brasiliensis induces non-apoptic cell death in hepatocellular carcinoma cell line HepG2. Cell Proliferation, 45(6): 577- 585.

6.       Abeywickrama, G., Debnath, S. C., Ambigaipalan, P. and Shahidi, F. (2016). Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. Journal of Agricultural and Food Chemistry, 64(49): 9342-9351.

7.       Rouphael, Y., Bernardi, J., Cardarelli, M., Bernardo, L., Kane, D., Colla, G. and Lucini, L. (2016). Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars anticancer Journal of Agricultural and Food Chemistry, 64(45): 8540-8548.

8.       Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5): 727-747.

9.       Boudet, A. M. (2007). Evolution and current status of research in phenolic compounds. Journal of Phytochemistry, 68(22): 2722-2735.

10.    Feng, J., Wang, Y., Yi, X., Yang, W. and He, X. (2016). Phenolics from durian exert pronounced no inhibitory and antioxidant activities. Journal of Agricultural and Food Chemistry, 64(21): 4273-4279.

11.    Wititsuwannakul, D., Chareonthiphakornb, N., Pacec, M. and Wititsuwannakul, R. (2002). Polyphenol oxidases from latex of Hevea brasiliensis: Purification and characterization. Phytochemistry, 61(61): 115-121.

12.    Kumlanghan, A., Kanatharana, P. and Asawatreratanakul, P. (2008). Microbial BOD sensor for monitoring treatment of wastewater. Enzyme and Microbial Technology, 42(6): 483-491.

13.    Arimoro, F. O., Iwegbue, C. M. A. and Osiobe, O. (2008). Effects of industrial wastewater on the physical and chemical characteristics of a tropical coastal river. Research Journal of Environmental Sciences, 2(3): 209-220.

14.    Casa, R., Annibale, A. D., Pieruccetti, F., Stazi, S. R., Sermanni, G. and Cascio, B. L. (2003). Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50: 959-966.

15.    Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S. and Mandi, L. (2009). Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials, 166(1): 117-125.

16.    Brenneman, C. and Ebeler, S. E. (1999). Chromatographic separations using solid-phase extraction cartridges: Separation of wine phenolics. Journal of Chemical Education, 76(12): 1710-1711.

17.    Papagiannopoulos, M., Wollseifen, H. R., Mellenthin, A., Haber, B. and Galensa, R. (2004). Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS. Journal of Agricultural and Food Chemistry, 52(12): 3784-3791.

18.    Dvořáková, M., Hulín, P., Karabín, M. and Dostálek, P. (2007). Determination of polyphenols in beer by an effective method based on solid-phase extraction and high performance liquid chromatography with diode-array detection. Czech Journal of Food Sciences, 25(4): 182-188.

19.    Šeruga, M., Novak, I. and Jakobek, L. (2011). Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chemistry, 124(3): 1208-1216.

20.    Xie, F. (2011). Rapid and sensitive analysis of eight polyphenols in tobacco by rapid resolution liquid chromatography. American Journal of Analytical Chemistry, 2(8): 929-933.

21.    Das, A. J., Khawas, P., Miyaji, T. and Deka, S. C. (2015). Phytochemical constituents, ATR-FTIR analysis and antimicrobial activity of four plant leaves used for preparing rice beer in Assam, India. International Journal of Food Properties, 19(9): 2087-2101.

22.    Coates, J. (2006). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed; John Wiley and Sons, Inc., Hoboken, New Jersey, USA: pp.10815- 10837.

23.    Folin, O. and Ciocalteu, V. (1927). On tyrosine and trytophane determination in protein. Journal of Biological Chemistry, 27: 627-650.

24.    Mradu, G., Saumyakanti, S., Sohini, M. and Arup, M. (2012). HPLC profiles of standard phenolic compounds present  in  medicinal  plants.  International Journal of Pharmacognosy and Phytochemical Research, 4(3): 162-167.

25.    Yu, J., Ahmedna, M. and Goktepe, I. (2005). Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chemistry, 90(1): 199-206.

26.    de Villiers, A., Lynen, F., Crouch, A., and Sandra, P. (2004). Development of a solid-phase extraction Procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia, 59 (7-8): 403-409.

27.    Loeser, E. (2009). Peculiarities of mobile phases containing formic acid. Chromatographia, 69(9-10): 807-811.

28.    Singh, R. and Mendhulkar, V. D. (2015). FTIR studies and spectrophotometric analysis of natural antioxidants, polyphenols and flavonoids in Abutilon indicum (Linn) sweet leaf extract. Journal of Chemical and Pharmaceutical Research, 7(6): 205-211.

29.    Trifunschi, S., Munteanu, M. F., Agotici, V., Ardelean, S. P., and Gligor, R. (2015). Determination of flavonoid and polyphenol compounds in Viscum album and Allium sativum extracts. International Current Pharmaceutical Journal, 4(5): 382-385.

30.    Li, S., Tian, M. and Row, K. (2010). Effect of mobile phase additives on the resolution of four bioactive compounds by RP-HPLC. International Journal of Molecular Sciences, 11(5): 2229-2240.

31.    Mulinnaci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C. and Vincieri, F. F. (2001). Polyphenolic content in olive oil waste waters and related olive samples. Journal of Agriculture and Food Chemistry, 49(8): 3509-3515.

32.    Dussourd, D. E. and Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817): 898-901.

33.    Farrell, B. D., Dussourd, D. E. and Mitter, C. (1991). Escalation of plant defenses: Do latex and resin canals spur plant diversification? American Naturalist, 138(4): 881-900.

34.    Sangsil, P., Nualsri, C., Woraathasin, N. and Nakkanong, K. (2016). Characterization of the phenylalanine ammonia lyase gene from the rubber tree (Hevea brasiliensis Mull. Arg.) and differential response during Rigidoporus microporus infection. Journal of Plant Protection Research, 56(4): 380-388.

35.    Ko, J. H., Chow, K. S. and Han, K. H. (2003). Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Journal of Plant Molecular Biology, 53(4): 479-492.

36.    Lattanzio, V., Kroon, P. A., Quideau, S., and Treutter, D. (2008). Plant phenolics – secondary metabolites with diverse functions. In Recent Advances in Polyphenol Research, Daayf, F.; Lattanzio, V., Eds; Wiley-Blackwell, Oxford, UK: pp. 1-386.

37.    Aziz, N. H., Farag, S. E., Mousa, L. A. and Abo-Zaid, M. A. (1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbiology, 93(374): 43-54.

38.    Tempesti, T. C., Alvarez, M. G., de Araújo, M. F., Catunda Júnior, F. E. A., de Carvalho, M. G. and Durantini, E. N. (2012). Antifungal activity of a novel quercetin derivative bearing a trifluoromethyl group on Candida albicans. Medicinal Chemistry Research, 21(9): 2217-2222.

39.    Nguyen, D. M. C., Seo, D. J., Lee, H. B., Kim, I. S., Kim, K. Y., Park, R. D. and Jung, W. J. (2013). Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial Pathogenesis, 56: 8-15.

40.    Leszczyński, B., Warchoł, J. and Niraz, S. (1985). The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. International Journal of Tropical Insect Science, 6(2): 157-158.

41.    Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G. and Memelink, J. (1999). Metabolic engineering of plant  secondary  metabolite  pathways  for  the production of fine chemicals. Biotechnology Letters, 21(6): 467-479.

42.    Nguyen, N. H. and Luong, T. T. (2012). Situation of wastewater treatment of natural rubber latex processing in the Southeastern region, Vietnam. Journal of Vietnamese Environment, 2(2): 58-64.

43.    Mohammadi, M., Man, H., Hassan, M. and Yee, P. (2013). Treatment of wastewater from rubber industry in Malaysia. African Journal of Biotechnology, 9(38): 6233-6243.

44.    Owamah, H. I., Enaboifo, M. A. and Izinyon, O. C. (2015). Treatment of wastewater from raw rubber processing industry using water lettuce macrophyte pond and the reuse of its effluent as biofertilizer. Agricultural Water Management, 146: 262-269.

45.    Andersson, L. I., Paprica, A. and Arvidsson, T. (1997). A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia, 46(1-2): 57-62.

46.    Abd-Talib, N., Mohd-Setapar, S. H. and Khamis, A. K. (2014). The benefits and limitations of methods development in solid  phase  extraction:  Mini review.  Jurnal Teknologi (Sciences  and Engineering), 69(4): 69-72.

47.    Thurman, E. M. and Snavely, K. (2000). Advances in solid-phase extraction disks for environmental chemistry. TrAC - Trends in Analytical Chemistry, 19(1): 18-26.

48.    Nema, T., Chan, E. C. Y. and Ho, P. C. (2010). Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine. Talanta, 82(2): 488-494.

49.    Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12):8813-8826.

50.    Rosa, L., Alvarez-Parrilla, E. and Gonz, G. A. (2010). Fruit and vegetable phytochemicals fruit and vegetable phytochemicals. Wiley-Blackwell, Iowa, USA: pp. 53-88.

51.    Kumar, A., Malik, A. K. and Tewary, D. K. (2009). A new method for determination of myricetin and quercetin using solid phase microextraction-high performance liquid chromatography-ultra violet/visible system in grapes, vegetables and red wine samples. Analytica Chimica Acta, 631(2): 177-181.

 




Previous                    Content                    Next