Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 175 - 184
DOI:
10.17576/mjas-2018-2202-02
RECENT ADVANCES IN THE PREPARATION OF OIL PALM
WASTE-BASED ADSORBENTS FOR REMOVAL OF ENVIRONMENTAL POLLUTANTS - A REVIEW
(Kemajuan Terkini dalam Penyediaan
Penjerap Berasaskan Sisa Kelapa Sawit untuk Penyingkiran Bahan Pencemar Alam
Sekitar - Sebuah Ulasan)
Faridah M. Marsin1, 2, Wan
Aini Wan Ibrahim1, 3, Hamid Rashidi Nodeh4, Zetty Azalea
Sutirman1, Ng Nyuk Ting1, Mohd Marsin Sanagi1,3*
1Department of Chemistry, Faculty of Science,
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2Malaysia Department of Chemistry (Southern Branch),
80100 Johor Bahru, Johor, Malaysia
3Centre for Sustainable Nanomaterials, Ibnu Sina Institute
for Scientific and Industrial Research,
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
4Department of Chemistry, Faculty of
Science,
University
of Tehran, Tehran, Iran
*Corresponding author:
marsin@kimia.fs.utm.my
Received: 10
November 2017; Accepted: 28 February 2018
Abstract
The palm oil industry is an excellent source for huge quantities
of highly useful biomass. Utilization of oil palm biomass-based materials for
the removal of environmental pollutants appears to be a viable solution in the
lights of promoting sustainable development. This article aims to review recent
advances in the preparation of adsorbent from different parts of oil palm
biomass for the removal of heavy metal and organic environmental pollutants
from water. Physical and chemical factors that enhance the applicability of oil
palm waste as adsorbents are also discussed. It is clear that each part of the
oil palm biomass is potentially applicable as biosorbents for most
environmental pollutants and the capability could be further enhanced through
modifications in accordance with its intended pollutants. Modifications by
chemical treatments such as acidic, basic or drying agent treatments under
optimum dosages have been found to have significant effects on the selectivity
of the analyte absorption. In general, basic treatment is more suitable for
common pollutants such as metals, pesticide and basic dyes. Meanwhile, the
acidic treatment is more suitable for non-polar organic pollutants such as
phenols. Recent trends in the application of oil palm biomass as biosorbents
are also discussed that together open new doors to sustainable development.
Keywords: oil palm biomass, adsorbent, activated
carbon, environmental pollutants
Abstrak
Industri minyak
kelapa sawit merupakan sumber yang baik untuk mendapatkan biojisim bermanfaat
dalam kuantiti yang besar. Penggunaan bahan berasaskan biojisim minyak kelapa
sawit bagi penyingkiran pencemar alam sekitar merupakan salah satu penyelesaian
berdaya maju dalam mempromosi pembangunan mampan. Artikel ini bertujuan untuk
mengulas kemajuan dalam penyediaan penjerap daripada pelbagai bahagian biojisim
kelapa sawit bagi penyingkiran ion logam berat dan pencemar organik alam
sekitar daripada air. Faktor fizikal dan kimia bagi meningkatkan kebolehgunaan
sisa kelapa sawit sebagai penjerap juga dibincangkan. Ianya jelas bahawa setiap
bahagian biojisim kelapa sawit berpotensi untuk digunakan sebagai bio-pengerap
bagi kebanyakan bahan pencemar, dan keupayaannya dapat dipertingkatkan melalui
pengubahsuaian sesuai dengan bahan pencemar yang digunakan. Pengubahsuaian dengan rawatan kimia misalnya
rawatan asid, alkali dan ejen pengeringan dengan dos yang optimum didapati
memberi kesan terhadap pemilihan penjerapan analit. Secara keseluruhan, rawatan
alkali lebih sesuai bagi bahan pencemar lazim misalnya logam, racuk mahluk
perosak, dan pewarna alkali. Sementara itu, rawatan asid lebih sesuai untuk
bahan pencemar organik yang tidak berkutub misalnya fenol. Aliran terkini dalam
aplikasi biojisim kelapa sawit sebagai bio-pengerap juga dibincangkan bagi
membuka laluan baharu untuk pembangunan
mampan.
Kata
kunci: biojisim kelapa sawit, penjerap, karbon teraktif,
pencemar alam sekitar
References
1.
Umar, A., Sanagi, M. M., Salisu, A., Wan Ibrahim, W. A., Abd Karim, K. J.
and Abdul Keyon, A. S. (2016). Preparation and characterization of starch
grafted with methacrylamide using ammonium persulphate initiator. Materials
Letters, 185:173–176.
2.
Salisu, A., Sanagi, M. M., Naim, A. A. and Karim, K. J.
(2015). Removal of methylene blue dye from aqueous solution using alginate
grafted polyacrylonitrile beads. Der Pharma Chemica, 7(2): 237–242.
3.
Sanagi, M. M., Muzakkir Mat Jais, M. N., Kamaruzaman, S., Wan
Ibrahim, W. A. and Baig, U. (2015). Multi-walled carbon nanotubes-agarose gel
micro-solid phase extraction for the determination of triazine herbicides in
water samples. Analytical Methods, 7(6): 2862–2868.
4.
Umar, A., Abu Naim, A. and Sanagi, M. M. (2014). Synthesis
and characterization of chitosan grafted with polystyrene using ammonium
persulfate initiator. Materials Letters, 124: 12–14.
5.
Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J. and Wan
Ibrahim, W. A. (2016). Preparation of methacrylamide-functionalized crosslinked
chitosan by free radical polymerization for the removal of lead ions. Carbohydrate
Polymers, 151: 1091–1099.
6.
Malaysia Palm Oil Board. (2016). Overview of the malaysian oil palm industry. http://bepi.mpob.gov.my/ images/overview/Overview_of_Industry_2016.pdf
[Accessed online May 2017].
7.
Sumathi, S., Chai, S. P. and Mohamed, A. R. (2008).
Utilization of oil palm as a source of renewable energy in Malaysia. Renewable
and Sustainable Energy Reviews, 12(9):
2404–2421.
8.
Sanagi, M. M., See, H. H., Wan Ibrahim, W. A. and Naim, A. A.
(2005). Determination of carotene, tocopherols and tocotrienols in residue oil
from palm pressed fiber using pressurized liquid extraction-normal phase liquid
chromatography. Analytica Chimica Acta, 538(1–2): 71–76.
9.
Ng, F. Y., Yew, F. K. and Basiron, K. Y. (2011). A renewable
future driven with malaysian palm oil-based green technology. Journal of Oil
Palm and The Environment, 2:
1–7.
10.
Web of Science Core Collection (2017). Oil palm biowaste. https://apps.webofknowledge.com, [Access online 7
November 2017].
11.
Malaysian Palm Oil Board (2016). Oil palm statistics. fact
sheets on malaysian palm oil.
http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2016.pdf [Access
online May 2017].
12.
Guo, J. and Lua, A. C. (2002). Characterization of adsorbent
prepared from oil-palm shell by CO2 activation for removal of
gaseous pollutants. Materials Letters, 55(5): 334–339.
13.
Guo, J., Xu, W. S., Chen, Y. L. and Lua, A. C. (2005).
Adsorption of NH3 onto activated carbon prepared from palm shells
impregnated with H2SO4. Journal of Colloid and
Interface Science, 281(2):
285–290.
14.
Meier, D., Andersons, B., Irbe, I., Chirkova, J. and Faix, O.
(2008). Preliminary study on fungicide and sorption effects of fast pyrolysis
liquids used as wood preservative. In A. V. Bridgwater (Ed.), Progress in
Thermochemical Biomass Conversion. Oxford: Blackwell Science: 1550–1563.
15.
Nomanbhay, S. M., Hussain, R. and Palanisamy, K. (2013).
Microwave-Assisted alkaline pretreatment and microwave assisted enzymatic
saccharification of oil palm empty fruit bunch fiber for enhanced fermentable
sugar yield. Journal of Sustainable Bioenergy Systems, 3(1): 7–17.
16.
Ofori-Boateng, C. and Lee, K. T. (2013). Sustainable
utilization of oil palm wastes for bioactive phytochemicals for the benefit of
the oil palm and nutraceutical industries. Phytochemistry Reviews, 12(1): 173–190.
17.
Rugayah, A. F., Astimar, A. A. and Norzita, N. (2014).
Preparation and characterisation of activated carbon from palm kernel shell by
physical activation with steam. Journal of Oil Palm Research, 26(3): 251–264.
18.
Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman,
O., Hashim, R., and Ibrahim, M. N. M. (2012). The use of date palm as a
potential adsorbent for wastewater treatment: A review. Environmental
Science and Pollution Research, 19(5):
1464–1484.
19.
Sidik, S. M., Jalil, A. A., Triwahyono, S., Adam, S. H.,
Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves adsorbent
with enhanced hydrophobicity for crude oil removal. Chemical Engineering
Journal, 203: 9–18.
20.
Hamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J. and Zain,
H. M. (2016). Characteristics of oil palm shell biochar and activated carbon
prepared at different carbonization times. Desalination and Water Treatment,
15(17): 7999–8006.
21.
Sutrisno, B. and Hidayat, A. (2015). The effects of
activation temperature on physico-chemical characteristics of activated carbons
derived from biomass wastes. AIP Conference Proceedings, 1699: 060016.
22.
Wirasnita, R., Hadibarata, T., Mohd Yusoff, A. R. and Mat
Lazim, Z. (2015). Preparation and characterization of activated carbon from
oil palm empty fruit bunch wastes using zinc chloride. Jurnal Teknologi, 74(11): 77–81.
23.
Nomanbhay, S. M. and Palanisamy, K. (2005). Removal of heavy
metal from industrial wastewater using chitosan coated oil palm shell charcoal.
Electronic Journal of Biotechnology, 8(1): 43–53.
24.
Hameed, B. H., Tan, I. A. W. and Ahmad, A. L. (2008).
Optimization of basic dye removal by oil palm fibre-based activated carbon
using response surface methodology. Journal of Hazardous Materials, 158: 324–332.
25.
Hameed, B. H. and El-Khaiary, M. I. (2008). Batch removal of
malachite green from aqueous solutions by adsorption on oil palm trunk fibre:
Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials,
154(1–3): 237–244.
26.
Montoya-Suarez, S., Colpas-Castillo, F., Meza-Fuentes, E.,
Rodríguez-Ruiz, J. and Fernandez-Maestre, R. (2016). Activated carbons from
waste of oil-palm kernel shells, sawdust and tannery leather scraps and
application to chromium(VI), phenol, and methylene blue dye adsorption. Water
Science and Technology, 73(1):
21–27.
27.
Sajab, M. S., Chia, C. H., Zakaria, S. and Sillanpää, M.
(2015). Fixed-bed column studies for the removal of cationic and anionic dyes
by chemically modified oil palm empty fruit bunch fibers : Single- and multi-solute
systems. Desalination and Water Treatment, 55(5): 1372–1379.
28.
Sajab, M. S., Chia, C. H., Zakaria, S. and Khiew, P. S.
(2013). Cationic and anionic modifications of oil palm empty fruit bunch fibers
for the removal of dyes
from aqueous solutions. Bioresource Technology, 128: 571–577.
29.
Kietkwanboot, A., Tran, H. T. M. and Suttinun, O. (2015).
Simultaneous dephenolization and decolorization of treated palm oil mill
effluent by oil palm fiber-immobilized trametes hirsuta strain AK 04. Water,
Air, and Soil Pollution, 226:
345.
30.
Hussin, M. H., Pohan, N. A., Garba, Z. N., Kassim, M. J.,
Rahim, A. A., Brosse, N. and Haafiz, M. K. M. (2016). Physicochemical of
microcrystalline cellulose from oil palm fronds as potential methylene blue
adsorbents. International Journal of Biological Macromolecules, 92: 11–19.
31.
Wong, K. T., Eu, N. C., Ibrahim, S., Kim, H., Yoon, Y. and
Jang, M. (2015). Recyclable magnetite-loaded palm shell-waste based activated
carbon for the effective removal of methylene blue from aqueous solution. Journal
of Cleaner Production, 115:
337–342.
32.
Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M. and Masrur,
S. F. (2015). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics
and thermodynamic studies. Journal of the Taiwan Institute of Chemical
Engineers, 63: 363–370.
33.
Zaini, M. A. A., Meng, T. W., Kamaruddin, M. J., Setapar, S.
H. M. and Yunus, M. A. C. (2014). Microwave-induced zinc chloride activated
palm kernel shell for dye removal. Sains Malaysiana, 43(9): 1421–1428.
34.
Acquah, C., Sie Yon, L., Tuah, Z., Ling Ngee, N. and Danquah,
M. K. (2016). Synthesis and performance analysis of oil palm ash (OPA) based
adsorbent as a palm oil bleaching material. Journal of Cleaner Production,
139: 1098–1104.
35.
Khanday, W. A., Asif, M. and Hameed, B. H. (2016).
Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a
bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. International
Journal of Biological Macromolecules, 95: 895–902.
36.
Shaarani, F. W. and Hameed, B. H. (2011). Ammonia-modified
activated carbon for the adsorption of 2,4-dichlorophenol. Chemical
Engineering Journal, 169(1–3):
180–185.
37.
Salman, J. M. and Hameed, B. H. (2010). Effect of preparation
conditions of oil palm fronds activated carbon on adsorption of bentazon from
aqueous solutions. Journal of Hazardous Materials, 175(1–3), 133–137.
38.
Hamad, B. K., Noor, A. M., Afida, A. R. and Mohd Asri, M. N.
(2010). High removal of 4-chloroguaiacol by high surface area of oil palm
shell-activated carbon activated with NaOH from aqueous solution. Desalination,
257(1–3): 1–7.
39.
Hamad, B. K., Noor, A. M. and Rahim, A. A. (2011). Removal of
4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell
activated carbon activated with K2CO3. Journal of
Physical Science, 22(1):
39–55.
40.
Nasir, M. A. M. and Saleh, S. H. (2016). Characterization of
hemicelluloses from oil palm empty fruit bunches obtained by alkaline
extraction and ethanol precipitation. Malaysian Journal of Analytical
Sciences, 20(4), 849–855.
41.
Yavari, S., Malakahmad, A., Sapari, N. B. and Yavari, S.
(2016). Sorption-desorption mechanisms of imazapic and imazapyr herbicides on
biochars produced from agricultural wastes. Journal of Environmental
Chemical Engineering, 4(4):
3981–3989.
42.
Salman, J. M., Abid, F. M. and Muhammed, A. A. (2012). Batch
study for pesticide glyphosate adsorption onto palm oil fronds activated
carbon. Asian Journal of Chemistry, 24(12): 5646–5648.
43.
Hameed, B. H., Tan, I. A. W. and Ahmad, A. L. (2009).
Preparation of oil palm empty fruit bunch-based activated carbon for removal of
2,4,6-trichlorophenol: Optimization using response surface methodology. Journal
of Hazardous Materials, 164(2–3):
1316–1324.
44.
Salman, J. M., Njoku, V. O. and Hameed, B. H. (2011). Batch
and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto
oil palm frond activated carbon. Chemical
Engineering Journal, 174(1):
33–40.
45.
Tan, I., Lim, L. and Lim, K. (2013). Removal of atrazine from
aqueous solutions using HNO3 treated oil palm shell-based adsorbent.
Unimas e-Journal of Civil Engineering, 4(3): 17–22.
46.
Salamatinia, B., Kamaruddin, A. H. and Abdullah, A. Z.
(2008). Modeling of the continuous copper and zinc removal by sorption onto
sodium hydroxide-modified oil palm frond in a fixed-bed column. Chemical
Engineering Journal, 145(2):
259–266.
47.
Wahi, R., Ngaini, Z. and Jok, V. (2009). Removal of mercury,
lead and copper from aqueous solution by activated carbon of palm oil empty
fruit bunch. World Applied Sciences Journal, 5: 84–91.
48.
Rehman, M. A., Yusoff, I., Ahmmad, R. and Alias, Y. (2015).
Arsenic Adsorption using palm oil waste clinker sand biotechnology: an
experimental and optimization approach. Water, Air, and Soil Pollution, 226(5): 149.
49.
Daneshfozoun, S., Abdullah, B. and Abdullah, M. A. (2016).
The effects of oil palm empty fruit bunch sorbent sizes on plumbum (II) ion
sorption. Advanced Materials Research, 1133: 542–546.
50.
Daneshfozoun, S., Redza, R., Vo, D.-V. N., Ramli, N. M.,
Abdullah, M. A. and Abdullah, B. (2017). Adsorption kinetics of Pb(II) ions
from aqueous solution using modified magnetic nano-composite of OPEFB. Indian
Journal of Science and Technology, 10(11),
1–5.
51.
Lua, A. C. and Jia, Q. (2009). Adsorption of phenol by
oil-palm-shell activated carbons in a fixed bed. Chemical Engineering
Journal, 150(2–3): 455–461.
52.
Alam, M. Z., Muyibi, S. A., Mansor, M. F. and Wahid, R.
(2007). Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems. Journal of
Environmental Sciences, 19(1):
103–108.
53.
AL-Aoh, H. A., Maah, M. J., Ahmad, A. A., and Abas, M. R.
(2012). Adsorption of 4-nitrophenol on palm oil fuel ash activated by amino
silane coupling agent. Desalination and Water Treatment, 40(1–3), 159–167.