Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 175 - 184

DOI: 10.17576/mjas-2018-2202-02

 

 

 

RECENT ADVANCES IN THE PREPARATION OF OIL PALM WASTE-BASED ADSORBENTS FOR REMOVAL OF ENVIRONMENTAL POLLUTANTS - A REVIEW

 

(Kemajuan Terkini dalam Penyediaan Penjerap Berasaskan Sisa Kelapa Sawit untuk Penyingkiran Bahan Pencemar Alam Sekitar - Sebuah Ulasan)

 

Faridah M. Marsin1, 2, Wan Aini Wan Ibrahim1, 3, Hamid Rashidi Nodeh4, Zetty Azalea Sutirman1, Ng Nyuk Ting1, Mohd Marsin Sanagi1,3*

 

1Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Malaysia Department of Chemistry (Southern Branch), 80100 Johor Bahru, Johor, Malaysia

3Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

4Department of Chemistry, Faculty of Science,

University of Tehran, Tehran, Iran

 

*Corresponding author:  marsin@kimia.fs.utm.my

 

 

Received: 10 November 2017; Accepted: 28 February 2018

 

 

Abstract

The palm oil industry is an excellent source for huge quantities of highly useful biomass. Utilization of oil palm biomass-based materials for the removal of environmental pollutants appears to be a viable solution in the lights of promoting sustainable development. This article aims to review recent advances in the preparation of adsorbent from different parts of oil palm biomass for the removal of heavy metal and organic environmental pollutants from water. Physical and chemical factors that enhance the applicability of oil palm waste as adsorbents are also discussed. It is clear that each part of the oil palm biomass is potentially applicable as biosorbents for most environmental pollutants and the capability could be further enhanced through modifications in accordance with its intended pollutants. Modifications by chemical treatments such as acidic, basic or drying agent treatments under optimum dosages have been found to have significant effects on the selectivity of the analyte absorption. In general, basic treatment is more suitable for common pollutants such as metals, pesticide and basic dyes. Meanwhile, the acidic treatment is more suitable for non-polar organic pollutants such as phenols. Recent trends in the application of oil palm biomass as biosorbents are also discussed that together open new doors to sustainable development.

 

Keywords:  oil palm biomass, adsorbent, activated carbon, environmental pollutants

 

Abstrak

Industri minyak kelapa sawit merupakan sumber yang baik untuk mendapatkan biojisim bermanfaat dalam kuantiti yang besar. Penggunaan bahan berasaskan biojisim minyak kelapa sawit bagi penyingkiran pencemar alam sekitar merupakan salah satu penyelesaian berdaya maju dalam mempromosi pembangunan mampan. Artikel ini bertujuan untuk mengulas kemajuan dalam penyediaan penjerap daripada pelbagai bahagian biojisim kelapa sawit bagi penyingkiran ion logam berat dan pencemar organik alam sekitar daripada air. Faktor fizikal dan kimia bagi meningkatkan kebolehgunaan sisa kelapa sawit sebagai penjerap juga dibincangkan. Ianya jelas bahawa setiap bahagian biojisim kelapa sawit berpotensi untuk digunakan sebagai bio-pengerap bagi kebanyakan bahan pencemar, dan keupayaannya dapat dipertingkatkan melalui pengubahsuaian sesuai dengan bahan pencemar yang digunakan.  Pengubahsuaian dengan rawatan kimia misalnya rawatan asid, alkali dan ejen pengeringan dengan dos yang optimum didapati memberi kesan terhadap pemilihan penjerapan analit. Secara keseluruhan, rawatan alkali lebih sesuai bagi bahan pencemar lazim misalnya logam, racuk mahluk perosak, dan pewarna alkali. Sementara itu, rawatan asid lebih sesuai untuk bahan pencemar organik yang tidak berkutub misalnya fenol. Aliran terkini dalam aplikasi biojisim kelapa sawit sebagai bio-pengerap juga dibincangkan bagi membuka  laluan baharu untuk pembangunan mampan.

 

Kata kunci:  biojisim kelapa sawit, penjerap, karbon teraktif, pencemar alam sekitar

 

References

1.       Umar, A., Sanagi, M. M., Salisu, A., Wan Ibrahim, W. A., Abd Karim, K. J. and Abdul Keyon, A. S. (2016). Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator. Materials Letters, 185:173–176.

2.       Salisu, A., Sanagi, M. M., Naim, A. A. and Karim, K. J. (2015). Removal of methylene blue dye from aqueous solution using alginate grafted polyacrylonitrile beads. Der Pharma Chemica, 7(2): 237–242.

3.       Sanagi, M. M., Muzakkir Mat Jais, M. N., Kamaruzaman, S., Wan Ibrahim, W. A. and Baig, U. (2015). Multi-walled carbon nanotubes-agarose gel micro-solid phase extraction for the determination of triazine herbicides in water samples. Analytical Methods, 7(6): 2862–2868.

4.       Umar, A., Abu Naim, A. and Sanagi, M. M. (2014). Synthesis and characterization of chitosan grafted with polystyrene using ammonium persulfate initiator. Materials Letters, 124: 12–14.

5.       Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J. and Wan Ibrahim, W. A. (2016). Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydrate Polymers, 151: 1091–1099.

6.       Malaysia Palm Oil Board. (2016). Overview of the malaysian oil palm industry.  http://bepi.mpob.gov.my/ images/overview/Overview_of_Industry_2016.pdf [Accessed online May 2017].

7.       Sumathi, S., Chai, S. P. and Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 12(9): 2404–2421.

8.       Sanagi, M. M., See, H. H., Wan Ibrahim, W. A. and Naim, A. A. (2005). Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Analytica Chimica Acta, 538(1–2): 71–76.

9.       Ng, F. Y., Yew, F. K. and Basiron, K. Y. (2011). A renewable future driven with malaysian palm oil-based green technology. Journal of Oil Palm and The Environment, 2: 1–7.

10.    Web of Science Core Collection (2017). Oil palm biowaste. https://apps.webofknowledge.com, [Access online 7 November 2017].

11.    Malaysian Palm Oil Board (2016). Oil palm statistics. fact sheets on malaysian palm oil. http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2016.pdf [Access online May 2017].

12.    Guo, J. and Lua, A. C. (2002). Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Materials Letters, 55(5): 334–339.

13.    Guo, J., Xu, W. S., Chen, Y. L. and Lua, A. C. (2005). Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. Journal of Colloid and Interface Science, 281(2): 285–290.

14.    Meier, D., Andersons, B., Irbe, I., Chirkova, J. and Faix, O. (2008). Preliminary study on fungicide and sorption effects of fast pyrolysis liquids used as wood preservative. In A. V. Bridgwater (Ed.), Progress in Thermochemical Biomass Conversion. Oxford: Blackwell Science: 1550–1563.

15.    Nomanbhay, S. M., Hussain, R. and Palanisamy, K. (2013). Microwave-Assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, 3(1): 7–17.

16.    Ofori-Boateng, C. and Lee, K. T. (2013). Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochemistry Reviews, 12(1): 173–190.

17.    Rugayah, A. F., Astimar, A. A. and Norzita, N. (2014). Preparation and characterisation of activated carbon from palm kernel shell by physical activation with steam. Journal of Oil Palm Research, 26(3): 251–264.

18.    Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R., and Ibrahim, M. N. M. (2012). The use of date palm as a potential adsorbent for wastewater treatment: A review. Environmental Science and Pollution Research, 19(5): 1464–1484.

19.    Sidik, S. M., Jalil, A. A., Triwahyono, S., Adam, S. H., Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chemical Engineering Journal, 203: 9–18.

20.    Hamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J. and Zain, H. M. (2016). Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment, 15(17): 7999–8006.

21.    Sutrisno, B. and Hidayat, A. (2015). The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes. AIP Conference Proceedings, 1699: 060016.

22.    Wirasnita, R., Hadibarata, T., Mohd Yusoff, A. R. and Mat Lazim, Z. (2015). Preparation and characterization of activated  carbon  from  oil palm empty fruit bunch wastes  using zinc chloride. Jurnal Teknologi, 74(11): 77–81.

23.    Nomanbhay, S. M. and Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1): 43–53.

24.    Hameed, B. H., Tan, I. A. W. and Ahmad, A. L. (2008). Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. Journal of Hazardous Materials, 158: 324–332.

25.    Hameed, B. H. and El-Khaiary, M. I. (2008). Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154(1–3): 237–244.

26.    Montoya-Suarez, S., Colpas-Castillo, F., Meza-Fuentes, E., Rodríguez-Ruiz, J. and Fernandez-Maestre, R. (2016). Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption. Water Science and Technology, 73(1): 21–27.

27.    Sajab, M. S., Chia, C. H., Zakaria, S. and Sillanpää, M. (2015). Fixed-bed column studies for the removal of cationic and anionic dyes by chemically modified oil palm empty fruit bunch fibers : Single- and multi-solute systems. Desalination and Water Treatment, 55(5): 1372–1379.

28.    Sajab, M. S., Chia, C. H., Zakaria, S. and Khiew, P. S. (2013). Cationic and anionic modifications of oil palm empty fruit bunch fibers  for  the  removal  of  dyes from aqueous solutions. Bioresource Technology, 128: 571–577.

29.    Kietkwanboot, A., Tran, H. T. M. and Suttinun, O. (2015). Simultaneous dephenolization and decolorization of treated palm oil mill effluent by oil palm fiber-immobilized trametes hirsuta strain AK 04. Water, Air, and Soil Pollution, 226: 345.

30.    Hussin, M. H., Pohan, N. A., Garba, Z. N., Kassim, M. J., Rahim, A. A., Brosse, N. and Haafiz, M. K. M. (2016). Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. International Journal of Biological Macromolecules, 92: 11–19.

31.    Wong, K. T., Eu, N. C., Ibrahim, S., Kim, H., Yoon, Y. and Jang, M. (2015). Recyclable magnetite-loaded palm shell-waste based activated carbon for the effective removal of methylene blue from aqueous solution. Journal of Cleaner Production, 115: 337–342.

32.    Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M. and Masrur, S. F. (2015). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 63: 363–370.

33.    Zaini, M. A. A., Meng, T. W., Kamaruddin, M. J., Setapar, S. H. M. and Yunus, M. A. C. (2014). Microwave-induced zinc chloride activated palm kernel shell for dye removal. Sains Malaysiana, 43(9): 1421–1428.

34.    Acquah, C., Sie Yon, L., Tuah, Z., Ling Ngee, N. and Danquah, M. K. (2016). Synthesis and performance analysis of oil palm ash (OPA) based adsorbent as a palm oil bleaching material. Journal of Cleaner Production, 139: 1098–1104.

35.    Khanday, W. A., Asif, M. and Hameed, B. H. (2016). Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. International Journal of Biological Macromolecules, 95: 895–902.

36.    Shaarani, F. W. and Hameed, B. H. (2011). Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol. Chemical Engineering Journal, 169(1–3): 180–185.

37.    Salman, J. M. and Hameed, B. H. (2010). Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of Hazardous Materials, 175(1–3), 133–137.

38.    Hamad, B. K., Noor, A. M., Afida, A. R. and Mohd Asri, M. N. (2010). High removal of 4-chloroguaiacol by high surface area of oil palm shell-activated carbon activated with NaOH from aqueous solution. Desalination, 257(1–3): 1–7.

39.    Hamad, B. K., Noor, A. M. and Rahim, A. A. (2011). Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3. Journal of Physical Science, 22(1): 39–55.

40.    Nasir, M. A. M. and Saleh, S. H. (2016). Characterization of hemicelluloses from oil palm empty fruit bunches obtained by alkaline extraction and ethanol precipitation. Malaysian Journal of Analytical Sciences, 20(4), 849–855.

41.    Yavari, S., Malakahmad, A., Sapari, N. B. and Yavari, S. (2016). Sorption-desorption mechanisms of imazapic and imazapyr herbicides on biochars produced from agricultural wastes. Journal of Environmental Chemical Engineering, 4(4): 3981–3989.

42.    Salman, J. M., Abid, F. M. and Muhammed, A. A. (2012). Batch study for pesticide glyphosate adsorption onto palm oil fronds activated carbon. Asian Journal of Chemistry, 24(12): 5646–5648.

43.    Hameed, B. H., Tan, I. A. W. and Ahmad, A. L. (2009). Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology. Journal of Hazardous Materials, 164(2–3): 1316–1324.

44.    Salman, J. M., Njoku, V. O. and Hameed, B. H. (2011). Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic  acid  onto  oil  palm frond activated carbon. Chemical Engineering Journal, 174(1): 33–40.

45.    Tan, I., Lim, L. and Lim, K. (2013). Removal of atrazine from aqueous solutions using HNO3 treated oil palm shell-based adsorbent. Unimas e-Journal of Civil Engineering, 4(3): 17–22.

46.    Salamatinia, B., Kamaruddin, A. H. and Abdullah, A. Z. (2008). Modeling of the continuous copper and zinc removal by sorption onto sodium hydroxide-modified oil palm frond in a fixed-bed column. Chemical Engineering Journal, 145(2): 259–266.

47.    Wahi, R., Ngaini, Z. and Jok, V. (2009). Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Applied Sciences Journal, 5: 84–91.

48.    Rehman, M. A., Yusoff, I., Ahmmad, R. and Alias, Y. (2015). Arsenic Adsorption using palm oil waste clinker sand biotechnology: an experimental and optimization approach. Water, Air, and Soil Pollution, 226(5): 149.

49.    Daneshfozoun, S., Abdullah, B. and Abdullah, M. A. (2016). The effects of oil palm empty fruit bunch sorbent sizes on plumbum (II) ion sorption. Advanced Materials Research, 1133: 542–546.

50.    Daneshfozoun, S., Redza, R., Vo, D.-V. N., Ramli, N. M., Abdullah, M. A. and Abdullah, B. (2017). Adsorption kinetics of Pb(II) ions from aqueous solution using modified magnetic nano-composite of OPEFB. Indian Journal of Science and Technology, 10(11), 1–5.

51.    Lua, A. C. and Jia, Q. (2009). Adsorption of phenol by oil-palm-shell activated carbons in a fixed bed. Chemical Engineering Journal, 150(2–3): 455–461.

52.    Alam, M. Z., Muyibi, S. A., Mansor, M. F. and Wahid, R. (2007). Activated carbons derived from oil palm empty-fruit  bunches:  Application  to  environmental problems. Journal of Environmental Sciences, 19(1): 103–108.

53.    AL-Aoh, H. A., Maah, M. J., Ahmad, A. A., and Abas, M. R. (2012). Adsorption of 4-nitrophenol on palm oil fuel ash activated by amino silane coupling agent. Desalination and Water Treatment, 40(1–3), 159–167.

 

 

 




Previous                    Content                    Next